Gromov — Cette page d’homonymie répertorie des personnes (réelles ou fictives) partageant un même patronyme. Gromov (masculin ; Громов) ou Gromova (féminin ; Громова) est un patronyme russe porté par plusieurs personnalités (par ordre… … Wikipédia en Français
Gromov–Hausdorff convergence — Gromov–Hausdorff convergence, named after Mikhail Gromov and Felix Hausdorff, is a notion for convergence of metric spaces which is a generalization of Hausdorff convergence. Gromov–Hausdorff distanceGromov–Hausdorff distance measures how far two … Wikipedia
Gromov-Witten-Invariante — Gromov Witten Invarianten sind eine spezielle Form topologischer Invarianten, welche eine Verbindung zwischen Topologie und Algebra herstellen. Genauer bezeichnen sie in der symplektischen Topologie und algebraischen Geometrie rationale Zahlen,… … Deutsch Wikipedia
Gromov's theorem — may mean one of a number of results of Mikhail Gromov:*One of Gromov s compactness theorems: ** Gromov s compactness theorem (geometry) in Riemannian geometry ** Gromov s compactness theorem (topology) in symplectic topology *Gromov s Betti… … Wikipedia
Gromov's compactness theorem — can refer to either of two mathematical theorems:* Gromov s compactness theorem (geometry) in Riemannian geometry * Gromov s compactness theorem (topology) in symplectic topology … Wikipedia
Gromov–Witten invariant — In mathematics, specifically in symplectic topology and algebraic geometry, Gromov–Witten (GW) invariants are rational numbers that, in certain situations, count pseudoholomorphic curves meeting prescribed conditions in a given symplectic… … Wikipedia
Gromov product — In mathematics, the Gromov product is a concept in the theory of metric spaces named after the Russian mathematician Mikhail Gromov. Intuitively, the Gromov product measures the distance for which two geodesics starting at the same point remain… … Wikipedia
Gromov's systolic inequality for essential manifolds — In Riemannian geometry, M. Gromov s systolic inequality for essential n manifolds M dates from 1983. It is a lower bound for the volume of an arbitrary metric on M, in terms of its homotopy 1 systole. The homotopy 1 systole is the least length of … Wikipedia
Gromov-Hausdorff-Metrik — In der Mathematik bezeichnet die Gromov Hausdorff Metrik, benannt nach den Mathematikern Michail Leonidowitsch Gromow und Felix Hausdorff, eine Metrik auf der Menge der Isometrieklassen von kompakten metrischen Räumen. Anschaulich ist der Gromov… … Deutsch Wikipedia
Gromov's theorem on groups of polynomial growth — In mathematics, Gromov s theorem on groups of polynomial growth, named for Mikhail Gromov, characterizes finitely generated groups of polynomial growth, as those groups which have nilpotentsubgroups of finite index. The growth rate of a group is… … Wikipedia