Gromov's theorem on groups of polynomial growth — In mathematics, Gromov s theorem on groups of polynomial growth, named for Mikhail Gromov, characterizes finitely generated groups of polynomial growth, as those groups which have nilpotentsubgroups of finite index. The growth rate of a group is… … Wikipedia
Gromov–Hausdorff convergence — Gromov–Hausdorff convergence, named after Mikhail Gromov and Felix Hausdorff, is a notion for convergence of metric spaces which is a generalization of Hausdorff convergence. Gromov–Hausdorff distanceGromov–Hausdorff distance measures how far two … Wikipedia
Gromov's compactness theorem (geometry) — For Gromov s compactness theorem in symplectic topology, see that article. In Riemannian geometry, Gromov s (pre)compactness theorem states that the set of Riemannian manifolds of a given dimension, with Ricci curvature ≥ c and diameter ≤ D is… … Wikipedia
Gromov's compactness theorem — can refer to either of two mathematical theorems:* Gromov s compactness theorem (geometry) in Riemannian geometry * Gromov s compactness theorem (topology) in symplectic topology … Wikipedia
Gromov's systolic inequality for essential manifolds — In Riemannian geometry, M. Gromov s systolic inequality for essential n manifolds M dates from 1983. It is a lower bound for the volume of an arbitrary metric on M, in terms of its homotopy 1 systole. The homotopy 1 systole is the least length of … Wikipedia
Gromov's compactness theorem (topology) — For Gromov s compactness theorem in Riemannian geometry, see that article. In symplectic topology, Gromov s compactness theorem states that a sequence of pseudoholomorphic curves in an almost complex manifold with a uniform energy bound must have … Wikipedia
Gromov–Witten invariant — In mathematics, specifically in symplectic topology and algebraic geometry, Gromov–Witten (GW) invariants are rational numbers that, in certain situations, count pseudoholomorphic curves meeting prescribed conditions in a given symplectic… … Wikipedia
Gromov's inequality for complex projective space — In Riemannian geometry, Gromov s optimal stable 2 systolic inequality is the inequality: mathrm{stsys} 2{}^n leq n!;mathrm{vol} {2n}(mathbb{CP}^n),valid for an arbitrary Riemannian metric on the complex projective space, where the optimal bound… … Wikipedia
Mikhail Leonidovich Gromov — For other people of the same name, see Gromov. Mikhail Leonidovich Gromov Mikhail Gromov Born … Wikipedia
Mostow rigidity theorem — In mathematics, Mostow s rigidity theorem, or strong rigidity theorem, or Mostow–Prasad rigidity theorem, essentially states that the geometry of a finite volume hyperbolic manifold of dimension greater than two is determined by the fundamental… … Wikipedia