Mostow rigidity theorem

Mostow rigidity theorem

In mathematics, Mostow's rigidity theorem, or strong rigidity theorem, or Mostow–Prasad rigidity theorem, essentially states that the geometry of a finite-volume hyperbolic manifold of dimension greater than two is determined by the fundamental group and hence unique. The theorem was proven for closed manifolds by Mostow (1968) and extended to finite volume manifolds by Marden (1974) in 3-dimensions, and by Prasad (1973) in dimensions at least 3. Gromov (1981) gave an alternate proof using the Gromov norm.

Weil (1960, 1962) proved a closely related theorem, that implies in particular that cocompact discrete groups of isometries of hyperbolic space of dimension at least 3 have no non-trivial deformations.

While the theorem shows that the deformation space of (complete) hyperbolic structures on a finite volume hyperbolic n-manifold (for n > 2) is a point, for a hyperbolic surface of genus g > 1 there is a moduli space of dimension 6g − 6 that parameterizes all metrics of constant curvature (up to diffeomorphism), a fact essential for Teichmüller theory. In dimension three, there is a "non-rigidity" theorem due to Thurston called the hyperbolic Dehn surgery theorem; it allows one to deform hyperbolic structures on a finite volume manifold as long as changing homeomorphism type is allowed. In addition, there is a rich theory of deformation spaces of hyperbolic structures on infinite volume manifolds.

Contents

The theorem

The theorem can be given in a geometric formulation, and in an algebraic formulation.

Geometric form

The Mostow rigidity theorem may be stated as:

Suppose M and N are complete finite-volume hyperbolic n-manifolds with n > 2. If there exists an isomorphism ƒ : π1(M) → π1(N) then it is induced by a unique isometry from M to N.

Here, π1(M) is the fundamental group of a manifold M.

Another version is to state that any homotopy equivalence from M to N can be homotoped to a unique isometry. The proof actually shows that if N has greater dimension than M then there can be no homotopy equivalence between them.

Algebraic form

An equivalent formulation is:

Let Γ and Δ be discrete subgroups of the isometry group of hyperbolic n-space H with n > 2 whose quotients Hand Hhave finite volume. If they are isomorphic, then they are conjugate.

Applications

The group of isometries of a finite-volume hyperbolic n-manifoldM (for n>2) is finite and isomorphic to Out(π1(M)).

Mostow rigidity was also used by Thurston to prove the uniqueness of circle packing representations of triangulated planar graphs.

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Mostow — Mostów, a Polish village George Mostow, a mathematician Mostow rigidity theorem This disambiguation page lists articles associated with the same title. If an internal link led you here, you ma …   Wikipedia

  • Circle packing theorem — Example of the circle packing theorem on K5, the complete graph on five vertices, minus one edge. The circle packing theorem (also known as the Koebe–Andreev–Thurston theorem) describes the possible tangency relations between circles in the plane …   Wikipedia

  • Geometric group theory — is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these groups act (that is, when the… …   Wikipedia

  • Shing-Tung Yau — at Harvard Law School dining hall Born …   Wikipedia

  • Lattice (discrete subgroup) — In Lie theory and related areas of mathematics, a lattice in a locally compact topological group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of R n , this amounts …   Wikipedia

  • Borel conjecture — In mathematics, specifically geometric topology, the Borel conjecture asserts that an aspherical closed manifold is determined by its fundamental group, up to homeomorphism. It is a rigidity conjecture, demanding that a weak, algebraic notion of… …   Wikipedia

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

  • Hyperbolic 3-manifold — A hyperbolic 3 manifold is a 3 manifold equipped with a complete Riemannian metric of constant sectional curvature 1. In other words, it is the quotient of three dimensional hyperbolic space by a subgroup of hyperbolic isometries acting freely… …   Wikipedia

  • Pierson College — Yale Residential College Infobox shield = name = Pierson College motto Latin = motto English = Pierson College, the College that dares to be all that it can be! song = P is for the P in Pierson College named for = Abraham Pierson year established …   Wikipedia

  • Hyperbolic space — In mathematics, hyperbolic n space, denoted H n , is the maximally symmetric, simply connected, n dimensional Riemannian manifold with constant sectional curvature −1. Hyperbolic space is the principal example of a space exhibiting hyperbolic… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”