- Fresnel equations
The Fresnel equations, deduced by
Augustin-Jean Fresnel (pronEng|freɪˈnɛl), describe the behaviour oflight when moving between media of differing refractive indices. The reflection of light that the equations predict is known as Fresnel reflection.Explanation
When light moves from a medium of a given
refractive index "n"1 into a second medium with refractive index "n"2, both reflection andrefraction of the light may occur.In the diagram on the right, an incident light ray PO strikes at point O the interface between two media of refractive indexes "n"1 and "n"2. Part of the ray is reflected as ray OQ and part refracted as ray OS. The angles that the incident, reflected and refracted rays make to the normal of the interface are given as θi, θr and θt, respectively.The relationship between these angles is given by the
law of reflection andSnell's law .The fraction of the incident power that is reflected from the interface is given by the "
reflection coefficient " "R", and the fraction that is refracted is given by the "transmission coefficient" "T". [Hecht (1987), p. 100.] The media are assumed to be "non-magnetic".The calculations of "R" and "T" depend on
polarisation of the incident ray. If the light is polarised with theelectric field of the light perpendicular to the plane of the diagram above ("s"-polarised), the reflection coefficient is given by::
where θt can be derived from θi by
Snell's law and is simplified using trigonometric identities.If the incident light is polarised in the plane of the diagram ("p"-polarised), the "R" is given by:
:
The transmission coefficient in each case is given by "T"s = 1 − "R"s and "T"p = 1 − "R"p. [Hecht (1987), p. 102.]
If the incident light is unpolarised (containing an equal mix of "s"- and "p"-polarisations), the reflection coefficient is "R" = ("R"s + "R"p)/2.
Equations for coefficients corresponding to ratios of the
electric field amplitude s of the waves can also be derived, and these are also called "Fresnel equations".At one particular angle for a given "n"1 and "n"2, the value of "R"p goes to zero and a "p"-polarised incident ray is purely refracted. This angle is known as
Brewster's angle , and is around 56° for a glass medium in air or vacuum. Note that this statement is only true when the refractive indexes of both materials arereal number s, as is the case for materials like air and glass. For materials that absorb light, likemetal s andsemiconductor s, "n" is complex, and "R"p does not generally go to zero.When moving from a denser medium into a less dense one (i.e., "n"1 > "n"2), above an incidence angle known as the "critical angle", all light is reflected and "R"s = "R"p = 1. This phenomenon is known as
total internal reflection . The critical angle is approximately 41° for glass in air.When the light is at near-normal incidence to the interface (θi ≈ θt ≈ 0), the reflection and transmission coefficient are given by:
: :
For common glass, the reflection coefficient is about 4%. Note that reflection by a window is from the front side as well as the back side, and that some of the light bounces back and forth a number of times between the two sides. The combined reflection coefficient for this case is 2"R"/(1 + "R"), when
interference can be neglected.In reality, when light makes multiple reflections between two parallel surfaces, the multiple beams of light generally interfere with one another, and the surfaces act as a
Fabry-Perot interferometer . This effect is responsible for the colours seen in oil films on water, and it is used in optics to makeoptical coating s that can greatly lower the reflectivity or can be used as anoptical filter .It should be noted that the discussion given here assumes that the permeability μ is equal to the vacuum permeability μ0 in both media. This is approximately true for most
dielectric materials, but not for some other types of material. The completely general Fresnel equations are more complicated.ee also
*
Index-matching material
*Fresnel diffraction
*Fresnel integral
*Fresnel lantern
*Fresnel lens
*Fresnel rhomb , Fresnel's apparatus to produce circularly polarized light [http://physics.kenyon.edu/EarlyApparatus/Polarized_Light/Fresnels_Rhomb/Fresnels_Rhomb.html]
*Fresnel zone
*Fresnel zone plate
*Fresnel number
*Fresnel drag
*Specular reflection References
*cite book | first=Eugene|last=Hecht|year=1987|title=Optics|edition=2nd ed.|publisher=Addison Wesley|id=ISBN 0-201-11609-X
External links
* [http://scienceworld.wolfram.com/physics/FresnelEquations.html Fresnel Equations] – Wolfram
* [http://swiss.csail.mit.edu/~jaffer/FreeSnell/ FreeSnell] – Free software computes the optical properties of multilayer materials
* [http://thinfilm.hansteen.net/ Thinfilm] – Web interface for calculating optical properties of thin films and multilayer materials. (Reflection & transmission coefficients, ellipsometric parameters Psi & Delta)
* [http://www.calctool.org/CALC/phys/optics/reflec_refrac Simple web interface for calculating single-interface reflection and refraction angles and strengths.]
* [http://ReflectionCoefficient.INFO/ ReflectionCoefficient.INFO] – Optical reflection coefficient calculator
Wikimedia Foundation. 2010.