- Parking orbit
A parking orbit is a temporary orbit used during the launch of a
satellite or otherspace probe . A launch vehicle boosts into the parking orbit, then coasts for a while, then fires again to enter the final desired trajectory. The alternative to a parking orbit is "direct injection", where the rocket fires continuously (except during staging) until its fuel is exhausted, ending with the payload on the final trajectory.There are several reasons why a parking orbit may be used:
*It can increase thelaunch window . For earth-escape missions, these are often quite short (seconds to minutes) if no parking orbit is used. With a parking orbit, these can often be increased up to several hours.
*For non-LEO missions, the desired location for the final burn may not be in a convenient spot. In particular, for earth-escape missions that want good northern coverage of the trajectory, the correct place for the final burn is often in the southern hemisphere.
*Forgeostationary orbit missions, the correct spot for the final (or next to final) firing is normally on the equator. In such a case, the rocket is launched, coasts in a parking orbit until it is over the equator, then fires again into ageostationary transfer orbit .
*For manned lunar missions, a parking orbit allowed some checkout while still close to home, before committing to the lunar trip.
*It is needed if the desired orbit has a highperigee . In this case the booster launches into an elliptical parking orbit, then coasts until the high point of the orbit, then fires again to raise the perigee. SeeHohmann transfer orbit .The figure shows the first two reasons. For this lunar mission, the desired location for the final firing is originally over southern Africa. As the day progresses, this point stays essentially fixed while the Earth moves underneath, and this is compensated for by changing the launch angle.
Disadvantages of parking orbits
The most notable disadvantage is that a rocket needs to coast for a while, then restart while under zero g conditions. Furthermore the length of two of the burns (the initial injection burn, and the final burn) typically depend on where in the launch window the launch occurs. To do this without wasting fuel, a rocket stage that can fire, then stop, then start again is needed. This implies a liquid fuel engine since solid fuel rockets cannot be stopped or restarted - once ignited they burn to completion. But even in a liquid fueled engine, this "multiple restart" capability is non-trivial for a number of reasons:
*During the coast, the propellants will drift away from the bottom of the tank and the pump inlets. This must be dealt with in some way. Either tanks with diaphragms, or ullage rockets for settling the propellant back to the bottom of the tank, are needed.
*Longer life batteries and other consumables are needed.
*Some engines use special chemicals for ignition; multiple sets are needed for re-starts
*Better insulation is needed, particularly on cryogenic tanks, to prevent too much propellant boiloff during coast.
*A betterinertial guidance system is needed, to keep track of the state during the coast.
*Areaction control system is needed, to orient the stage properly for the final burn, and perhaps to establish a suitable thermal orientation during coast.The Centaur and Agena families of upper stages were designed for such restarts and have often been used in this manner. (The last Agena flew in 1987 but Centaur is still in production.)
Examples
*The
Apollo program used parking orbits, for all the reasons mentioned above except those that pertain to geostationary orbits.*The
Space Shuttle missions to theInternational Space Station do not use parking orbits, for several reasons. The station is in a high inclinationLow Earth orbit , where parking orbits are not much help; the shuttle does not have multiple restart capability; and the short launch windows are not a critical problem (another one will occur a day later, due to the orbital geometry).*On the other hand, when the shuttle launched interplanetary probes such as Galileo, it used a parking orbit to deliver the probe to the right injection spot.
*The
Ariane 5 does not use parking orbits. This simplifies the launcher since multiple restart is not needed, and the penalty is small for their typical GTO mission, as their launch site is close to the equator. An upgrade to the second stage (ESC-B) will have multiple re-start capability, so future missions may use parking orbits.*In a literal example of a parking orbit, the
Automated Transfer Vehicle (ATV) can park for several months in orbit while waiting to rendezvous with theInternational Space Station . For safety reasons, the ATV cannot approach the station while a Soyuz, Progress, orSpace Shuttle is docked, even if a docking port is free. [cite web |url=http://www.spaceflightnow.com/news/n0802/10atv1/ |title=Maiden launch of Europe's resupply ship gets new date |author=Stephen Clark |publisher=Spaceflight Now]References
Wikimedia Foundation. 2010.