Volume integral

Volume integral

In mathematics — in particular, in multivariable calculus — a volume integral refers to an integral over a 3-dimensional domain.

Volume integral is a triple integral of the constant function 1, which gives the volume of the region "D", that is, the integral :operatorname{Vol}(D)=iiintlimits_D dx,dy,dz.

It can also mean a triple integral within a region "D" in R3 of a function f(x,y,z), and is usually written as:

:iiintlimits_D f(x,y,z),dx,dy,dz.

A volume integral in cylindrical coordinates is

:iiintlimits_D f(r, heta,z),r,dr,d heta,dz,

and a volume integral in spherical coordinates has the form

:iiintlimits_D f( ho, heta,phi), ho^2 sinphi ,d ho ,dphi, d heta .

Example

Integrating the function f(x,y,z) = 1 over a unit cube yields the following result:

iiint limits_0^1 1 ,dx, dy ,dz = iint limits_0^1 (1 - 0) ,dy ,dz = int limits_0^1 (1 - 0) dz = 1 - 0 = 1

So the volume of the unit cube is 1 as expected. This is rather trivial however and a volume integral is far more powerful. For instance if we have a scalar function egin{align} fcolon mathbb{R}^3 & o mathbb{R} end{align} describing the density of the cube at a given point (x,y,z) by f = x+y+z then performing the volume integral will give the total mass of the cube:

iiint limits_0^1 x + y + z , dx ,dy ,dz = iint limits_0^1 frac 12 + y + z , dy ,dz = int limits_0^1 1 + z , dz = frac 32

ee also

*divergence theorem
*surface integral
*Volume and surface elements in different co-ordinate systems

External links

* [http://mathworld.wolfram.com/VolumeIntegral.html MathWorld article on volume integrals]


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • volume integral — tūrinis integralas statusas T sritis fizika atitikmenys: angl. volume integral vok. Raumintegral, n; Volumenintegral, n; Volumintegral, n rus. объёмный интеграл, m pranc. intégrale volumique, f …   Fizikos terminų žodynas

  • Integral — This article is about the concept of integrals in calculus. For the set of numbers, see integer. For other uses, see Integral (disambiguation). A definite integral of a function can be represented as the signed area of the region bounded by its… …   Wikipedia

  • Volume and surface elements in different co-ordinate systems — This page outlines the value of different volume and surface elements in several different coordinate systems.Note that in the surface area elements dS, the radius r is not a variable but a constant evaluated at the particular value, hence the… …   Wikipedia

  • Integral symbol — The Unicode|∫ symbol is used to denote the integral in mathematics. The notation was introduced by the German mathematician Gottfried Wilhelm von Leibniz towards the end of the 17th century. The symbol was based on the Unicode|ſ (long s)… …   Wikipedia

  • Volume de solides usuels — Volume Pour les articles homonymes, voir Volume (homonymie). En physique, le volume d un objet mesure « l extension dans l espace » qu il possède dans les trois directions en même temps, de même que l aire d une figure dans le plan… …   Wikipédia en Français

  • volume dose — integral d …   Medical dictionary

  • Integral movement — This article is about the integral movement in philosophy and psychology. See Integral (disambiguation) for other uses. The integral movement (also called the integral paradigm, integral philosophy, the integral worldview, or the integral… …   Wikipedia

  • Volume — Pour les articles homonymes, voir Volume (homonymie). Le volume, en sciences physiques ou mathématiques, est une grandeur qui mesure l extension d un objet ou d une partie de l espace. En physique, le volume d un objet mesure « l extension… …   Wikipédia en Français

  • Volume d'une sphère — Le volume d une sphère est une mesure de l espace délimité par une sphère. Si le rayon d une sphère est R, son volume est 4⁄3×π×R3. Sommaire 1 Histoire 2 Démonstrations 2.1 …   Wikipédia en Français

  • Volume form — In mathematics, a volume form is a nowhere zero differential n form on an n manifold. Every volume form defines a measure on the manifold, and thus a means to calculate volumes in a generalized sense. A manifold has a volume form if and only if… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”