- Normal polytope
-
In mathematics, specifically in combinatorial commutative algebra, a convex lattice polytope P is called normal if it has the following property: given any positive integer n, every lattice point of the dilation nP, obtained from P by scaling its vertices by the factor n and taking the convex hull of the resulting points, can be written as the sum of exactly n lattice points in P. This property plays an important role in the theory of toric varieties, where it corresponds to projective normality of the toric variety determined by P.
Contents
Example
The simplex in Rk with the vertices at the origin and along the unit coordinate vectors is normal.
Relation to normal monoids
Any cancellative commutative monoid M can be embedded into an abelian group. More precisely, the canonical map from M into its Grothendieck group K(M) is an embedding. Define the normalization of M to be the set
where nx here means x added to itself n times. If M is equal to its normalization, then we say that M is a normal monoid. For example, the monoid Nn consisting of n-tuples of natural numbers is a normal monoid, with the Grothendieck group Zn.
For a polytope P ⊆ Rk, lift P into Rk+1 so that it lies in the hyperplane xk+1 = 1, and let C(P) be the set of all linear combinations with nonnegative coefficients of points in (P,1). Then C(P) is a convex cone,
If P is a convex lattice polytope, then it follows from Gordan's lemma that the intersection of C(P) with the lattice Zk+1 is a finitely generated (commutative, cancellative) monoid. One can prove that P is a normal polytope if and only if this monoid is normal.
See also
References
- Ezra Miller, Bernd Sturmfels, Combinatorial commutative algebra. Graduate Texts in Mathematics, 227. Springer-Verlag, New York, 2005. xiv+417 pp. ISBN 0-387-22356-8
- Winfried Bruns, Joseph Gubeladze, Polytopes, rings and K-theory, preprint. Can be found at http://math.sfsu.edu/gubeladze/publications/kripo/kripo.pdf
This geometry-related article is a stub. You can help Wikipedia by expanding it.