VALBOND

VALBOND

In molecular mechanics, VALBOND is a method for computing the angle bending energy that is based on valence bond theory. [Root, D. M.; Landis, C. R.; Cleveland, T. Valence Bond Concepts Applied to the Molecular Mechanics Description of Molecular Shapes. 1. Application to Nonhypervalent Molecules of the P-Block. "J. Am. Chem. Soc." 1993, "115", 4201-4209.] It is based on "orbital strength functions", which are maximized when the hybrid orbitals on the atom are orthogonal. The hybridization of the bonding orbitals are obtained from empirical formulas based on Bent's rule, which relates the preference towards p character with electronegativity.

The VALBOND functions are suitable for describing the energy of bond angle distortion not only around the equilibrium angles, but also at very large distortions. This represents an advantage over the simpler harmonic oscillator approximation used by many force fields, and allows the VALBOND method to handle hypervalent molecules [Cleveland, T.; Landis, C. R. Valence Bond Concepts Applied to the Molecular Mechanics Description of Molecular Shapes. 2. Application to Hypervalent Molecules of the P-Block. "J. Am. Chem. Soc." 1996, "118", 6020-6030. doi|10.1021/ja9506521] and transition metal complexes. [Landis, C. R.; Cleveland, T.; Firman; T. K. Valence Bond Concepts Applied to the Molecular Mechanics Description of Molecular Shapes. 3. Application to Transition Metal Alkyls and Hydrides. "J. Am. Chem. Soc." 1998, "120", 2641-2649. doi|10.1021/ja9734859] , [Firman; T. K.; Landis, C. R. Valence Bond Concepts Applied to the Molecular Mechanics Description of Molecular Shapes. 4. Transition Metals with π-Bonds. "J. Am. Chem. Soc." 2001, "123", 11728-11742. doi|10.1021/ja002586v] The VALBOND energy term has been combined with force fields such as CHARMM and UFF to provide a complete functional form that includes also bond stretching, torsions, and non-bonded interactions.

Functional form

Non-hypervalent molecules

For an angle α between normal (non-hypervalent) bonds involving an spmdn hybrid orbital, the energy contribution is

:E(alpha ) = k(S^{max} - S(alpha)),

where "k" is an empirical scaling factor that depends on the elements involved in the bond, "Smax", the "maximum strength function", is

:S^{max} = sqrt{frac{1}{1+m+n (1 + sqrt{3m} + sqrt{5n})

and "S(α)" is the strength function

:S(alpha ) = S^{max} sqrt{1 - frac{1- sqrt{1 - Delta ^2{2

which depends on the "nonorthogonality integral" Δ:

:Delta = frac{1}{1+m+n} left [ 1+m cos alpha + frac{n}{2}(3 cos ^2 alpha -1) ight ]

The energy contribution is added twice, once per each of the bonding orbitals involved in the angle (which may have different hybridizations and different values for "k").

For non-hypervalent p-block atoms, the hybridization value "n" is zero (no d-orbital contribution), and "m" is obtained as %p(1-%p), where %p is the p character of the orbital obtained from

:%p_i = frac{n_p wt_i}{sum_{j} wt_j}

where the sum over "j" includes all ligands, lone pairs, and radicals on the atom, "np" is the "gross hybridization" (for example, for an "sp2" atom, "np" = 2). The weight "wti" depends on the two elements involved in the bond (or just one for lone pair or radicals), and represents the preference for p character of different elements. The values of the weights are empirical, but can be rationalized in terms of Bent's rule.

Hypervalent molecules

For hypervalent molecules, the energy is represented as a combination of VALBOND configurations, which are akin to resonance structures that place three-center four-electron bonds (3c4e) in different ways. For example, ClF3 is represented as having one "normal" two-center bond and one 3c4e bond. There are three different configurations for ClF3, each one using a different Cl-F bond as the two-center bond. For more complicated systems the number of combinations increases rapidly; SF6 has 45 configurations.

:E_{tot} = sum_j c_j E_j

where the sum is over all configurations "j", and the coefficient "cj" is defined by the function

:c_j = frac{displaystyle prod_{i=1}^{hype} cos^2 alpha_i}{displaystyle sum_{j=1}^{config} prod_{i=1}^{hype} cos^2 alpha_i}

where "hype" refers to the 3c4e bonds. This function ensures that the configurations where the 3c4e bonds are linear are favored.

The energy terms are modified by multiplying them by a bond order factor, BOF, which is the product of the formal bond orders of the two bonds involved in the angle (for 3c4e bonds, the bond order is 0.5). For 3c4e bonds, the energy is calculated as

:E(alpha) = BOF imes k_{alpha} [1-Delta(alpha + pi)^2]

where Δ is again the non-orthogonality function, but here the angle α is offset by 180 degrees (π radians).

Finally, to ensure that the axial vs equatorial preference of different ligands in hypervalent compounds is reproduced, an "offset energy" term is subtracted. It has the form

:E_{offset} = sum_{i=1}^{config} c_i sum_{j=1}^{hype} frac{EN_{ija} + EN_{ijb{2}

where the EN terms depend on the electronegativity difference between the ligand and the central atom as follows:

:EN_{ija} = 30 imes (en_{lig} - en_{c.a.}) imes ss

where "ss" is 1 if the electronegativity difference is positive and 2 if it is negative.

For p-block hypervalent molecules, d orbitals are not used, so "n" = 0. The p contribution "m" is estimated from ab initio quantum chemistry methods and a natural bond orbital (NBO) analysis.

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • VSEPR theory — Valence shell electron pair repulsion (VSEPR) theory is a model in chemistry used to predict the shape of individual molecules based upon the extent of electron pair electrostatic repulsion.[1] It is also named Gillespie–Nyholm theory after its… …   Wikipedia

  • Force field (chemistry) — In the context of molecular mechanics, a force field (also called a forcefield) refers to the functional form and parameter sets used to describe the potential energy of a system of particles (typically but not necessarily atoms). Force field… …   Wikipedia

  • Hexamethyl tungsten — Chembox new Name = Hexamethyl tungsten ImageFile = Hexamethyltungsten 2D dimensions.png ImageName = Hexamethyl tungsten ImageFileL1 = Hexamethyl tungsten 3D balls.png ImageNameL1 = Ball and stick model of hexamethyl tungsten ImageFileR1 =… …   Wikipedia

  • Champ de force (chimie) — Pour les articles homonymes, voir champ de force. Un champ de force peut par exemple être utilisé afin de minimiser l énergie d étirement de cette molécule d éthane. Dans le cadre de la m …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”