Horocycle

Horocycle
A blue horocycle in the Poincaré disk model and some red normals. The normals converge asymptotically to the upper central point.

In hyperbolic geometry, a horocycle (Greek: όριο + κύκλος — border + circle) is a curve whose normals all converge asymptotically. (It is also called an oricycle or oricircle.) It is the two-dimensional example of a horosphere (or orisphere).

A horocycle can also be described as the limit of the circles that share a tangent in a given point, as their radii go towards infinity. In ordinary euclidean geometry, such a "circle of infinite radius" would be a straight line, but in hyperbolic geometry it curves. From the convex side the horocycle is approximated by hypercycles whose distances go towards infinity.

In the Poincaré disk model of the hyperbolic plane, the horocycles are represented by circles tangent to the boundary circle. In the Poincaré half-plane model the horocycles are represented by circles tangent to the boundary line, and lines parallel to the boundary line. In the hyperboloid model they are represented by intersections of the hyperboloid with planes whose normal lies in the asymptotic cone.

References

  • H.S.M. Coxeter (1961) Introduction to Geometry, §16.6: "Circles, horocycles, and equidistant curves", page 300,1, John Wiley & Sons.