Elongated triangular orthobicupola

Elongated triangular orthobicupola

Infobox Polyhedron


Polyhedron_Type=Johnson
"J"34 - J35 - J36
Face_List=2+6 triangles
2.3+6 squares
Edge_Count=36
Vertex_Count=18
Symmetry_Group="D"3h|
Vertex_List=6(3.4.3.4)
12(3.43)
Dual=-
Property_List=convex

In geometry, the elongated triangular orthobicupola is one of the Johnson solids ("J"35). As the name suggests, it can be constructed by elongating a triangular orthobicupola ("J"27) by inserting a hexagonal prism between its two halves. The resulting solid is superficially similar to the rhombicuboctahedron (one of the Archimedean solids), with the difference that it has threefold rotational symmetry about its axis instead of fourfold symmetry.

The 92 Johnson solids were named and described by Norman Johnson in 1966.

The volume of "J"35 can be calculated as follows:

"J"35 consists of 2 cupolae and hexagonal prism.

The two cupolae makes 1 cuboctahedron = 8 tetrahedra + 6 half-octahedra.1 octahedron = 4 tetrahedra, so total we have 20 tetrahedra.

What is the volume of a tetrahedron?Construct a tetrahedron having vertices in common with alternate vertices of acube (of side frac{1}{sqrt{2, if tetrahedron has unit edges). The 4 triangularpyramids left if the tetrahedron is removed from the cube form half anoctahedron = 2 tetrahedra. So

V_{tetrahedron} = frac{1}{3} V_{cube} = frac{1}{3} frac{1}sqrt{2^3} = frac{sqrt{2{12}

The hexagonal prism is more straightforward. The hexagon has area 6 frac{sqrt{3{4}, so

V_{prism} = frac{3 sqrt{3{2}

Finally

V_{J_{35 = 20 V_{tetrahedron} + V_{prism} = frac{5 sqrt{2{3} + frac{3 sqrt{3{2}

numerical value:

V_{J_{35 = 4.9550988153084743549606507192748

External links

* [http://mathworld.wolfram.com/JohnsonSolid.html Johnson Solid -- from MathWorld]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Triangular orthobicupola — Infobox Polyhedron Polyhedron Type=Johnson J 26 J27 J28 Face List=2+6 triangles 6 squares Edge Count=24 Vertex Count=12 Symmetry Group=D3h Vertex List=6(32.42) 6(3.4.3.4) Dual=Trapezo rhombic dodecahedron Property List=convexIn geometry, the… …   Wikipedia

  • Elongated triangular gyrobicupola — Infobox Polyhedron Polyhedron Type=Johnson J 35 J36 J37 Face List=2+6 triangles 2.6 squares Edge Count=36 Vertex Count=18 Symmetry Group= D 3d| Vertex List=6(3.4.3.4) 12(3.43) Dual= Property List=convexIn geometry, the elongated triangular… …   Wikipedia

  • Ortobicúpula triangular elongada — Imágen del sólido Tipo Johnson J34 J35 J36 …   Wikipedia Español

  • Johnson solid — The elongated square gyrobicupola (J37), a Johnson solid …   Wikipedia

  • Sólido de Johnson — La girobicúpula cuadrada elongada (J37), un sólido de Johnson …   Wikipedia Español

  • Johnson-Körper — Die Johnson Körper sind eine Klasse geometrischer Körper. Inhaltsverzeichnis 1 Eigenschaften 2 Liste 2.1 Pyramiden, Kuppeln und Rotunden 2.2 modifizierte Pyramiden …   Deutsch Wikipedia

  • Polyèdre de Johnson — Solide de Johnson La gyrobicoupole octogonale allongée (J37), un solide de Johnson …   Wikipédia en Français

  • Polyèdres de Johnson — Solide de Johnson La gyrobicoupole octogonale allongée (J37), un solide de Johnson …   Wikipédia en Français

  • Solide de Johnson — La gyrobicoupole octogonale allongée (J37), un solide de Johnson …   Wikipédia en Français

  • Solide de johnson — La gyrobicoupole octogonale allongée (J37), un solide de Johnson …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”