Morrie's law

Morrie's law

Morrie's law is a name that occasionally is used for the trigonometric identity

 \cos(20^\circ) \cdot \cos(40^\circ) \cdot \cos(80^\circ)=\frac{1}{8}.

It is a special case of the more general identity

 2^n \cdot \prod_{k=0}^{n-1} \cos(2^k \alpha)=\frac{\sin(2^n \alpha)}{\sin(\alpha)}

with n = 3 and α = 20°. The name is due to the physicist Richard Feynman, who used to refer to the identity under that name. Feynman picked that name because he learned it during his childhood from a boy with the name Morrie Jacobs and afterwards remembered it for all of his life.[1]

A similar identity for the sine function also holds:

 \sin(20^\circ) \cdot \sin(40^\circ) \cdot \sin(80^\circ)=\frac{\sqrt 3\ }{8}.

Moreover, dividing the second identity by the first, the following identity is evident:

 \tan(20^\circ) \cdot \tan(40^\circ) \cdot \tan(80^\circ)=\sqrt 3 = \tan(60^\circ). \,

Proof

Recall the double angle formula for the sine function

 \sin(2 \alpha) = 2 \sin(\alpha) \cos(\alpha). \,

Solve for cos(α)

 \cos(\alpha)=\frac{\sin(2 \alpha)}{2 \sin(\alpha)}.

It follows that


\begin{align}
\cos(2 \alpha) & = \frac{\sin(4 \alpha)}{2 \sin(2 \alpha)} \\[6pt]
\cos(4 \alpha) & = \frac{\sin(8 \alpha)}{2 \sin(4 \alpha)} \\
& {}\,\,\,  \vdots \\
\cos(2^{n-1} \alpha) & = \frac{\sin(2^{n} \alpha)}{2 \sin(2^{n-1} \alpha)}.
\end{align}

Multiplying all of these expressions together yields:

 \cos(\alpha) \cos(2 \alpha) \cos(4 \alpha) \cdots \cos(2^{n-1} \alpha)=
\frac{\sin(2 \alpha)}{2 \sin(\alpha)} \cdot \frac{\sin(4 \alpha)}{2 \sin(2 \alpha)} \cdot \frac{\sin(8 \alpha)}{2 \sin(4 \alpha)} \cdots \frac{\sin(2^{n} \alpha)}{2 \sin(2^{n-1} \alpha)}.

The intermediate numerators and denominators cancel leaving only the first denominator, a power of 2 and the final numerator. Note that there are n terms in both sides of the expression. Thus,

 \prod_{k=0}^{n-1} \cos(2^k \alpha)=\frac{\sin(2^n \alpha)}{2^n \sin(\alpha)},

which is equivalent to the generalization of Morrie's law.

References

  1. ^ W.A. Beyer, J.D. Louck, and D. Zeilberger, A Generalization of a Curiosity that Feynman Remembered All His Life, Math. Mag. 69, 43–44, 1996.

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Morrie's law — La Morrie s law (de l anglais, littéralement « loi de Morrie ») est l identité trigonométrique suivante : Le nom de cette « curiosité » est dû au physicien Richard Feynman. Sommaire 1 Histoire …   Wikipédia en Français

  • Morrie Ryskind — (bottom, left to right) George S. Kaufman, Morrie Ryskind, (top) Ira Gershwin, George Gershwin Born October 20, 1895 New York, New York Died August 24, 1985 (age 89) Washington, D.C …   Wikipedia

  • Теорема Мори — (англ. Morrie s law)  это случайное название следующего тригонометрического тождества: Это частный случай более общего тождества при n = 3 и α = 20°. «Теорема Мори» получила своё название благодаря Ричарду Фейнману, который использовал… …   Википедия

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

  • Identité trigonométrique — Une identité trigonométrique est une relation impliquant des fonctions trigonométriques et qui est vérifiée pour toutes les valeurs des variables intervenant dans la relation. Ces identités peuvent être utiles quand une expression comportant des… …   Wikipédia en Français

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

  • 52nd Primetime Emmy Awards — Infobox Emmy Awards name = 52nd type = P imagesize = 135px caption = date = September 10, 2000 site = Shrine Auditorium, Los Angeles, California creative arts = August 26, 2000 host = Garry Shandling network = ABC last = 51st Primetime next =… …   Wikipedia

  • List of Minder episodes — This episode list gives brief descriptions and some other details of the episodes of the ITV television series Minder. Series 1 – 7 focus on Arthur Daley, a middle aged car salesman and self described entrepreneur. He is assisted/minded by Terry… …   Wikipedia

  • List of Brandeis University people — Here follows a list of notable alumni and faculty of Brandeis University. = Notable alumni = Academia * Bonnie Berger: Professor of Applied Mathematics, Massachusetts Institute of Technology * David Bernstein: Law professor and blogger… …   Wikipedia

  • List of newspaper comic strips M-Z — Parent article: List of comic strips; Siblings: A L • M Z M * M (2002 ) by Mads Eriksen (Norway) * Maakies (1995? ) by Tony Millionaire (USA) * Mac Divot (1955 1971) by Jordan Lansky and Mel Keefer (USA) * Madam and Eve (1992 ) by Stephen Francis …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”