:(See Hardy space for notation.) Then converges to some function pointwise almost everywhere and in . That is,
::
:and
:: :for almost every .
Now, notice that this pointwise limit is a radial limit. That is, the limit we are taking is along a straight line from the center of the disk to the boundary of the circle, and the statement above hence says that: for almost every . The natural question is, now with this boundary function defined, will we converge pointwise to this function by taking a limit in any other way? That is, suppose instead of following a straight line to the boundary, we follow an arbitrary curve converging to some point on the boundary. Will converge to ? (Note that the above theorem is just the special case of ). It turns out that we need our curve to be "nontangential", meaning that the curve does not approach its target on the boundary in a way that makes it tangent to the boundary of the circle. In other words, the range of must be contained in a wedge eminating from the limit point. We summarize as follows:
:Definition: Let be a continuous path such that . Define
::
:and
::
: That is, is the wedge inside the disk with angle : whose axis passes between and zero. We say that : converges "nontangentially" to , or that it is a "nontangential limit", : if there exists such that is contained in and .
:Fatou's theorem: Let . Then for almost all , : for every nontangential limit converging to , where is defined as above.
Discussion
* The proof utilizes the symmetry of the Poisson kernel using the Hardy-Littlewood maximal function for the circle.
* The analogous theorem is frequently defined for the Hardy space over the upper-half plane and is proved in much the same way.
References
* John B. Garnett, "Bounded Analytic Functions", (2006) Springer-Verlag, New York
* Walter Rudin. "Real and Complex Analysis" (1987), 3rd Ed., McGraw Hill, New York.
* Elias Stein, "Singular integrals and differentiability properties of functions" (1970), Princeton University Press, Princeton.