Fatou–Lebesgue theorem

Fatou–Lebesgue theorem

In mathematics, the Fatou–Lebesgue theorem establishes a chain of inequalities relating the integrals (in the sense of Lebesgue) of the limit inferior and the limit superior of a sequence of functions to the limit inferior and the limit superior of integrals of these functions. The theorem is named after the French mathematicians Pierre Fatou (1878 – 1929) and Henri Léon Lebesgue (1875 – 1941).

If the sequence of functions converges pointwise, the inequalities turn into equalities and the theorem reduces to the Lebesgue's dominated convergence theorem.

tatement of the theorem

Let "f"1, "f"2, ... denote a sequence of real-valued measurable functions defined on a measure space ("S","Σ","μ"). If there exists a Lebesgue-integrable function "g" on "S" which dominates the sequence in absolute value, meaning that |"f""n"| ≤ "g" for all natural numbers "n", then all "f""n" as well as the limit inferior and the limit superior of the "f""n" are integrable and:int_S liminf_{n oinfty} f_n,dmule liminf_{n oinfty} int_S f_n,dmule limsup_{n oinfty} int_S f_n,dmule int_S limsup_{n oinfty} f_n,dmu,.Here the limit inferior and the limit superior of the "f""n" are taken pointwise. The integral of the absolute value of these limiting functions is bounded above by the integral of "g".

Since the middle inequality (for sequences of real numbers) is always true, the directions of the other inequalities are easy to remember.

Proof

All "f""n" as well as the limit inferior and the limit superior of the "f""n" are measurable and dominated in absolute value by "g", hence integrable.

The first inequality follows by applying Fatou's lemma to the non-negative functions "f""n" + "g" and using the linearity of the Lebesgue integral. The last inequality is the reverse Fatou lemma.

Since "g" also dominates the limit superior of the |"f""n"|,

:0leiggl|int_S liminf_{n oinfty} f_n,dmuiggr
leint_S Bigl|liminf_{n oinfty} f_nBigr|,dmuleint_S limsup_{n oinfty} |f_n|,dmuleint_S g,dmu

by the monotonicity of the Lebesgue integral. The same estimates hold for the limit superior of the "f""n".

References

External links

*planetmath reference|id=3679|title=Fatou-Lebesgue theorem


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Fatou's lemma — In mathematics, Fatou s lemma establishes an inequality relating the integral (in the sense of Lebesgue) of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after the French… …   Wikipedia

  • Dominated convergence theorem — In measure theory, Lebesgue s dominated convergence theorem provides sufficient conditions under which two limit processes commute, namely Lebesgue integration and almost everywhere convergence of a sequence of functions. The dominated… …   Wikipedia

  • Pierre Fatou — Pierre Joseph Louis Fatou (28 February 1878, Lorient – 10 August 1929, Pornichet) was a French mathematician working in the field of complex analytic dynamics. He entered the École Normale Supérieure in Paris in 1898 to study mathematics and… …   Wikipedia

  • Lebesgue integration — In mathematics, the integral of a non negative function can be regarded in the simplest case as the area between the graph of that function and the x axis. Lebesgue integration is a mathematical construction that extends the integral to a larger… …   Wikipedia

  • Monotone convergence theorem — In mathematics, there are several theorems dubbed monotone convergence; here we present some major examples. Contents 1 Convergence of a monotone sequence of real numbers 1.1 Theorem 1.2 Proof 1.3 …   Wikipedia

  • Intégrale de Lebesgue — En mathématiques, l’intégrale de Lebesgue désigne à la fois une théorie relative à l intégration et à la mesure, puis le résultat de l intégration d une fonction à valeurs réelles définie sur (ou sur ), munis de la mesure de Lebesgue.… …   Wikipédia en Français

  • Lévy's convergence theorem — In probability theory Lévy s convergence theorem (sometimes also called Lévy s dominated convergence theorem) states that for a sequence of random variables (X n)^infty {n=1} where *X nxrightarrow{a.s.} X and *|X n| < Y, where Y is some random… …   Wikipedia

  • List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… …   Wikipedia

  • List of mathematics articles (F) — NOTOC F F₄ F algebra F coalgebra F distribution F divergence Fσ set F space F test F theory F. and M. Riesz theorem F1 Score Faà di Bruno s formula Face (geometry) Face configuration Face diagonal Facet (mathematics) Facetting… …   Wikipedia

  • Теорема Лебега о мажорируемой сходимости — У этого термина существуют и другие значения, см. Теорема Лебега. Теорема Лебега о мажорируемой сходимости в функциональном анализе, теории вероятностей и смежных дисциплинах  это теорема, утверждающая, что если сходящаяся почти всюду… …   Википедия

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”