- GNSS applications
Global Navigation Satellite System (GNSS) receivers, using theGPS ,GLONASS , or Beidou system, are used in many applications.Navigation
*
Automobile s can be equipped with GNSS receivers at the factory or as aftermarket equipment. Units often display moving maps and information about location, speed, direction, and nearby streets and points of interest.*
Aircraft navigation systems usually display a "moving map" and are often connected to theautopilot for en-route navigation. Cockpit-mounted GNSS receivers andglass cockpit s are appearing ingeneral aviation aircraft of all sizes, using technologies such asWAAS orLAAS to increase accuracy. Many of these systems may be certified forinstrument flight rules navigation, and some can also be used for final approach and landing operations.Glider pilots useGNSS Flight Recorders to log GNSS data verifying their arrival at turn points ingliding competitions . Flight computers installed in many gliders also use GNSS to compute wind speed aloft, and glide paths towaypoint s such as alternate airports or mountain passes, to aid en route decision making for cross-countrysoaring .*
Boat s andship s can use GNSS to navigate all of the world's lakes, seas and oceans. Maritime GNSS units include functions useful on water, such as “man overboard” (MOB) functions that allow instantly marking the location where a person has fallen overboard, which simplifies rescue efforts. GNSS may be connected to the shipsself-steering gear andChartplotter s using the NMEA 0183 interface. GNSS can also improve the security of shipping traffic by enabling AIS.
*Heavy Equipment can use GNSS in construction, mining andprecision agriculture . The blades and buckets of construction equipment are controlled automatically in GNSS-basedmachine guidance systems.Agricultural equipment may use GNSS to steer automatically, or as a visual aid displayed on a screen for the driver. This is very useful for controlled traffic and row crop operations and when spraying. Harvesters with yield monitors can also use GNSS to create a yield map of the paddock being harvested.*Bicycles often use GNSS in racing and touring. GNSS navigation allows cyclists to plot their course in advance and follow this course, which may include quieter, narrower streets, without having to stop frequently to refer to separate maps. Some GNSS receivers are specifically adapted for cycling with special mounts and housings.
*Hikers, climbers, and even ordinary pedestrians in urban or rural environments can use GNSS to determine their position, with or without reference to separate maps. In isolated areas, the ability of GNSS to provide a precise position can greatly enhance the chances of rescue when climbers or hikers are disabled or lost (if they have a means of communication with rescue workers).
*GNSS equipment for the visually impaired is available.
*
Spacecraft are now beginning to use GNSS as a navigational tool. The addition of a GNSS receiver to a spacecraft allows precise orbit determination without ground tracking. This, in turn, enables autonomous spacecraft navigation, formation flying, and autonomous rendezvous. The use of GNSS in MEO, GEO, HEO, and highly elliptical orbits is feasible only if the receiver can acquire and track the much weaker (15 - 20 dB) GNSS side-lobe signals. This design constraint, and the radiation environment found in space, prevents the use ofCOTS receivers.Low earth orbit satellite constellations such as the one operated byOrbcomm uses GPS receivers on all satellites [ [http://www.orbcomm.com/about/spaceSegment.htm] , Orbcomm]urveying and mapping
*
Surveying — Survey-Grade GNSS receivers can be used to positionsurvey marker s, buildings, androad construction . These units use the signal from both the L1 and L2 GPS frequencies. Even though the L2 code data areencrypted , the signal'scarrier wave enables correction of someionospheric errors. These dual-frequency GPS receivers typically cost US$10,000 or more, but can have positioning errors on the order of one centimeter or less when used in carrier phasedifferential GPS mode.*Mapping and
geographic information system s (GIS) — Most mapping grade GNSS receivers use the carrier wave data from only the L1 frequency, but have a precisecrystal oscillator which reduces errors related to receiver clockjitter . This allows positioning errors on the order of one meter or less in real-time, with a differential GNSS signal received using a separate radio receiver. By storing the carrier phase measurements and differentially post-processing the data, positioning errors on the order of 10 centimeters are possible with these receivers.
**Several projects, includingOpenStreetMap andTierraWiki , allow users to create maps collaboratively, much like awiki , using consumer-grade GPS receivers.*Geophysics and geology — High precision measurements of crustal strain can be made with differential GNSS by finding the relative displacement between GNSS sensors. Multiple stations situated around an actively deforming area (such as a
volcano orfault zone ) can be used to find strain and ground movement. These measurements can then be used to interpret the cause of the deformation, such as a dike or sill beneath the surface of an active volcano.*
Archeology — As archaeologists excavate a site, they generally make a three-dimensional map of the site, detailing where each artifact is found.Other uses
*Precise time reference — Many systems that must be accurately synchronized use GNSS as a source of accurate time. GNSS can be used as a reference clock for
time code generators orNetwork Time Protocol (NTP)time server s.Sensor s (forseismology or other monitoring application), can use GNSS as a precise time source, so events may be timed accurately.Time division multiple access (TDMA) communications networks often rely on this precise timing to synchronize RF generating equipment, network equipment, andmultiplexer s.*Mobile Satellite Communications — Satellite communications systems use a directional antenna (usually a "dish") pointed at a satellite. The antenna on a moving ship or train, for example, must be pointed based on its current location. Modern antenna controllers usually incorporate a GNSS receiver to provide this information.
*Emergency and
Location-based services — GNSS functionality can be used byemergency services to locate cell phones. The ability to locate a mobile phone is required in the United States byE911 emergency services legislation. However, as of September 2006 such a system is not in place in all parts of the country. GNSS is less dependent on the telecommunications networktopology thanradiolocation for compatible phones.Assisted GPS reduces the power requirements of the mobile phone and increases the accuracy of the location. A phone's geographic location may also be used to provide location-based services including advertising, or other location-specific information.*
Location-based game s — The availability of hand-held GNSS receivers has led to games such asGeocaching , which involves using a hand-held GNSS unit to travel to a specificlongitude andlatitude to search for objects hidden by other geocachers. This popular activity often includes walking or hiking to natural locations.Geodashing is an outdoor sport usingwaypoint s.*Aircraft passengers — Most
airline s allow passenger use of GNSS units on their flights, except during landing and take-off when other electronic devices are also restricted. Even though consumer GNSS receivers have a minimal risk of interference, a few airlines disallow use of hand-held receivers during flight. Other airlines integrate aircraft tracking into the seat-back television entertainment system, available to all passengers even during takeoff and landing. [Joe Mehaffey. [http://gpsinformation.net/airgps/gpsrfi.htm Is it Safe to use a handheld GPS Receiver on a Commercial Aircraft?] . AccessedMay 15 ,2006 .]*Heading information — The GNSS system can be used to determine heading information, even though it was not designed for this purpose. A "GNSS compass" uses a pair of antennas separated by about 50 cm to detect the phase difference in the carrier signal from a particular GNSS satellite. [ [http://www.jrcamerica.com/product.asp?Product_Id=17778 "JLR-10 GPS Compass"] . Accessed Jan. 6, 2007.] Given the positions of the satellite, the position of the antenna, and the phase difference, the orientation of the two antennas can be computed. More expensive GNSS compass systems use three antennas in a triangle to get three separate readings with respect to each satellite. A GNSS compass is not subject to
magnetic declination as a magnetic compass is, and doesn't need to be reset periodically like agyrocompass . It is, however, subject to multipath effects.*
GPS tracking systems use GNSS to determine the location of a vehicle, person, pet or freight, and to record the position at regular intervals in order to create a log of movements. The data can be stored inside the unit, or sent to a remote computer by radio or cellular modem. Some systems allow the location to be viewed in real-time on the Internet with a web-browser.* Recent innovations in GPS tracking technology include its use for monitoring the whereabouts of convicted sex offenders, using GPS devices on their ankles as a condition of their parole. This passive monitoring system allows law enforcement officials to review the daily movements of offenders for a cost of only $5 or $10 per day. Real time, or instant tracking is considered too costly for GPS tracking of criminals. (cited from [http://articles.gpsfaq.com/details.aspx?item=50] ).
*
GNSS Road Pricing systems charge of road users using data from GNSS sensors inside vehicles. Advocates argue that road pricing using GNSS permits a number of policies such as tolling by distance on urban roads and can be used for many other applications in parking, insurance and vehicle emissions. Critics argue that GNSS could lead to an invasion of people’s privacy*Weather Prediction Improvements — Measurement of atmospheric bending of GNSS satellite signals by specialized GNSS receivers in orbital satellites can be used to determine atmospheric conditions such as air density, temperature, moisture and electron density. Such information from a set of six micro-satellites, launched in April 2006, called the Constellation of Observing System for Meteorology, Ionosphere and Climate
COSMIC has been proven to improve the accuracy of weather prediction models.*Photographic Geocoding — Combining GNSS position data with
photographs taken with a (typically digital)camera , allows one to view the photographs on a [http://panaramio.com map] or to lookup the locations where they were taken in agazeteer . It's possible to automatically annotate the photographs with the location they depict by integrating a GNSS device into the camera so that co-ordinates are embedded into photographs asExif metadata . Alternatively, the timestamps of pictures can be correlated with a GNSS track log. [Diomidis Spinellis. [http://www.spinellis.gr/pubs/jrnl/2003-PC-GTWeb/html/gtweb.html Position-annotated photographs: A geotemporal web] . IEEE Pervasive Computing, 2(2):72–79, April-June 2003. ( [http://dx.doi.org/10.1109/MPRV.2003.1203756 doi:10.1109/MPRV.2003.1203756] )] [K. Iwasaki, K. Yamazawa, and N. Yokoya. An indexing system for photos based on shooting position and orientation with geographic database. In "IEEE International Conference on Multimedia and Expo, ICME 2005", pages 390–393, 2005. ( [http://dx.doi.org/10.1109/ICME.2005.1521442 doi:10.1109/ICME.2005.1521442] )]*
Skydiving — Most commercial drop zones use a GNSS to aid the pilot to "spot" the plane to the correct position relative to the dropzone that will allow all skydivers on the load to be able to fly their canopies back to the landing area. The "spot" takes into account the number of groups exiting the plane and the upper winds. In areas where skydiving through cloud is permitted the GNSS can be the sole visual indicator when spotting in overcast conditions, this is referred to as a "GPS Spot".*
Marketing — Some market research companies have combined GIS systems and survey based research to help companies to decide where to open new branches, and to target their advertising according to the usage patterns of roads and the socio-demographic attributes of residential zones.*
Wreck diving — A popular variant of scuba diving is known as wreck diving. In order to locate the desiredshipwreck on the bottom of the ocean floor GPS is used to navigate to the approximate location and then the shipwreck is found using anechosounder .*
Social Networking A growing number of companies are marketing cellular phones equipped with GPS technology, offering the ability to pinpoint friends on custom created maps, along with alerts that inform the user when the party is within a programmed range. Not only do many of these phones offer social networking functions, they offer standard GPS navigation features such as audible voice commands for in-vehicle GPS navigation. (cited from [http://articles.gpsfaq.com/details.aspx?item=51] )References
Wikimedia Foundation. 2010.