Maximum subarray problem

Maximum subarray problem

In computer science, the maximum subarray problem is the task of finding the contiguous subarray within a one-dimensional array of numbers (containing at least one positive number) which has the largest sum. For example, for the sequence of values −2, 1, −3, 4, −1, 2, 1, −5, 4; the contiguous subarray with the largest sum is 4, −1, 2, 1, with sum 6.

The problem was first posed by Ulf Grenander of Brown University in 1977, as a simplified model for maximum likelihood estimation of patterns in digitized images. A linear time algorithm was found soon afterwards by Jay Kadane of Carnegie-Mellon University (Bentley 1984).

Contents

Kadane's algorithm

Kadane's algorithm consists of a scan through the array values, computing at each position the maximum subarray ending at that position. This subarray is either empty (in which case its sum is zero) or consists of one more element than the maximum subarray ending at the previous position. Thus, the problem can be solved with the following code, expressed here in Python:

def max_subarray(A):
    max_so_far = max_ending_here = 0
    for x in A:
        max_ending_here = max(0, max_ending_here + x)
        max_so_far = max(max_so_far, max_ending_here)
    return max_so_far

The algorithm can also be easily modified to keep track of the starting and ending indices of the maximum subarray.

Because of the way this algorithm uses optimal substructures (the maximum subarray ending at each position is calculated in a simple way from a related but smaller and overlapping subproblem, the maximum subarray ending at the previous position) this algorithm can be viewed as a simple example of dynamic programming.

Generalizations

Similar problems may be posed for higher dimensional arrays, but their solution is more complicated; see, e.g., Takaoka (2002). Brodal & Jørgensen (2007) showed how to find the k largest subarray sums in a one-dimensional array, in the optimal time bound O(n + k).

References

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

  • Dynamic programming — For the programming paradigm, see Dynamic programming language. In mathematics and computer science, dynamic programming is a method for solving complex problems by breaking them down into simpler subproblems. It is applicable to problems… …   Wikipedia

  • Category:Optimization algorithms — An optimization algorithm is an algorithm for finding a value x such that f(x) is as small (or as large) as possible, for a given function f, possibly with some constraints on x. Here, x can be a scalar or vector of continuous or discrete values …   Wikipedia

  • Counting sort — In computer science, counting sort is an algorithm for sorting a collection of objects according to keys that are small integers; that is, it is an integer sorting algorithm. It operates by counting the number of objects that have each distinct… …   Wikipedia

  • Best, worst and average case — In computer science, best, worst and average cases of a given algorithm express what the resource usage is at least , at most and on average , respectively. Usually the resource being considered is running time, but it could also be memory or… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”