Equivalence relations on algebraic cycles

Equivalence relations on algebraic cycles

In mathematics, equivalence relations of algebraic cycles are used in order to obtain a well-working theory of algebraic cycles, including well-defined intersection products. They also form an integral part of the category of pure motives.

Possible (and useful) adequate equivalence relations include the "rational", "algebraic", "homological" and "numerical equivalence". "Adequate" means that the relations behave well with respect to functoriality, i.e. push-forward and pull-back of cycles.

References

* | year=1972 | chapter=Motives | pages=53–82


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Algebraic cycle — In mathematics, an algebraic cycle on an algebraic variety V is, roughly speaking, a homology class on V that is represented by a linear combination of subvarieties of V . Therefore the algebraic cycles on V are the part of the algebraic topology …   Wikipedia

  • Adequate equivalence relation — In algebraic geometry, a branch of mathematics, an adequate equivalence relation is an equivalence relation on algebraic cycles of smooth projective varieties used to obtain a well working theory of such cycles, and in particular, well defined… …   Wikipedia

  • Equivalence relation — In mathematics, an equivalence relation is a binary relation between two elements of a set which groups them together as being equivalent in some way. Let a , b , and c be arbitrary elements of some set X . Then a b or a ≡ b denotes that a is… …   Wikipedia

  • Motive (algebraic geometry) — For other uses, see Motive (disambiguation). In algebraic geometry, a motive (or sometimes motif, following French usage) denotes some essential part of an algebraic variety . To date, pure motives have been defined, while conjectural mixed… …   Wikipedia

  • Outline of algebraic structures — In universal algebra, a branch of pure mathematics, an algebraic structure is a variety or quasivariety. Abstract algebra is primarily the study of algebraic structures and their properties. Some axiomatic formal systems that are neither… …   Wikipedia

  • Chow ring — In algebraic geometry, the Chow ring (named after W. L. Chow) of an algebraic variety is an algebraic geometric analogue of the cohomology ring of the variety considered as a topological space: its elements are formed out of actual subvarieties… …   Wikipedia

  • Intersection theory (mathematics) — In mathematics, intersection theory is a branch of algebraic geometry, where subvarieties are intersected on an algebraic variety, and of algebraic topology, where intersections are computed within the cohomology ring. The theory for varieties is …   Wikipedia

  • List of algebraic structures — In universal algebra, a branch of pure mathematics, an algebraic structure is a variety or quasivariety. Abstract algebra is primarily the study of algebraic structures and their properties. Some axiomatic formal systems that are neither… …   Wikipedia

  • List of mathematics articles (E) — NOTOC E E₇ E (mathematical constant) E function E₈ lattice E₈ manifold E∞ operad E7½ E8 investigation tool Earley parser Early stopping Earnshaw s theorem Earth mover s distance East Journal on Approximations Eastern Arabic numerals Easton s… …   Wikipedia

  • Chain complex — Bicomplex redirects here. For the number, see Bicomplex number In mathematics, chain complex and cochain complex are constructs originally used in the field of algebraic topology. They are algebraic means of representing the relationships between …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”