High-temperature electrolysis

High-temperature electrolysis

High-temperature electrolysis (also HTE or steam electrolysis) is a method currently being investigated for the production of hydrogen from water with oxygen as a by-product.


High temperature electrolysis is more efficient economically than traditional room-temperature electrolysis because some of the energy is supplied as heat, which is cheaper than electricity, and because the electrolysis reaction is more efficient at higher temperatures. In fact, at 2500°C, electrical input is unnecessary because water breaks down to hydrogen and oxygen through thermolysis. Such temperatures are impractical; proposed HTE systems operate between 100°C and 850°C.

The efficiency improvement of high-temperature electrolysis is best appreciated by assuming the electricity used comes from a heat engine, and then considering the amount of heat energy necessary to produce one kg hydrogen (141.86 megajoules), both in the HTE process itself and also in producing the electricity used. At 100°C, 350 megajoules of thermal energy are required (41% efficient). At 850°C, 225 megajoules are required (64% efficient).

A brief explanation on calculating the efficiency of an HTE electrolytic cell is available on the website of Solid Cell Inc at: http://www.solidcell.net/electrolyzer


The selection of the materials for the electrodes and electrolyte is essential. One currently investigated option for the process [Kazuya Yamada, Shinichi Makino, Kiyoshi Ono, Kentaro Matsunaga, Masato Yoshino, Takashi Ogawa, Shigeo Kasai, Seiji Fujiwara, and Hiroyuki Yamauchi "High Temperature Electrolysis for Hydrogen Production Using Solid Oxide Electrolyte Tubular Cells Assembly Unit", presented at AICHE Annual Meeting, San Francisco, California, November 2006. [http://aiche.confex.com/aiche/2006/techprogram/S3253.HTM abstract] ] used yttria-stabilized zirconia (YSZ) electrolytes, nickel-cermet steam/hydrogen electrodes, and mixed oxide of lanthanum, strontium and cobalt oxygen electrodes.

Economic potential

HTE does not provide a means to bypass the inherent inefficiency of a heat engine, by producing hydrogen which is then converted back to electricity in a fuel cell. (Any such efficiency improvement would allow the theoretical construction of a perpetual motion machine, which would violate the Second Law of Thermodynamics, which is impossible.) Thus any economic advantage to be gained from using HTE must come from supplying chemical processes which use hydrogen as a feedstock and not as a power source (such as the petrochemical or fertilizer industries), or motive processes for which hydrogen is a better energy carrier than electricity (rockets are an example, cars are not yet an example).

High-temperature electrolysis cannot compete with the chemical conversion of hydrocarbon or coal energy into hydrogen, as none of those conversions are limited by heat engine efficiency. Thus the possible supplies of cheap high-temperature heat for HTE are all nonchemical, including nuclear reactors, concentrating solar thermal collectors, and geothermal sources. HTE has been demonstrated in a laboratory at 108 kilojoules (thermal) per gram of hydrogen produced,cite press release
title=Steam heat: researchers gear up for full-scale hydrogen plant
publisher=Science Daily
] but not at a commercial scale, [cite web
url= http://www.hydrogen.energy.gov/pdfs/nuclear_energy_h2_plan.pdf
title= Nuclear hydrogen R&D plan
year= 2004
month= March
format= PDF
publisher= U.S. Dept. of Energy
accessdate= 2008-05-09
] The first commercial generation IV reactors are expected around 2030.

The market for hydrogen production

Given a cheap, high-temperature heat source, other hydrogen production methods are possible. In particular, see the thermochemical sulfur-iodine cycle. Thermochemical production might reach higher efficiencies than HTE because no heat engine is required. However, large-scale thermochemical production will require significant advances in materials that can withstand high-temperature, high-pressure, highly-corrosive environments.

The market for hydrogen is large (50 million metric tons/year in 2004, worth about $135 billion/year) and growing at about 10% per year (see hydrogen economy). The two major consumers are currently oil refineries and fertilizer plants (each consume about half of all production). Should hydrogen-powered cars become widespread, their consumption would greatly increase the demand for hydrogen.

Electrolysis and thermodynamics

During electrolysis, the amount of electrical energy that must be added equals the change in Gibbs free energy of the reaction plus the losses in the system. The losses can (theoretically) be arbitrarily close to zero, so the maximum thermodynamic efficiency of any electrochemical process equals 100%. In practice, the efficiency is given by electrical work achieved divided by the Gibbs free energy change of the reaction.

In most cases, such as room temperature water electrolysis, the electric input is larger than the enthalpy change of the reaction, so some energy is released as waste heat. In some other cases however, for instance in the electrolysis of steam into hydrogen and oxygen at high temperature, the opposite is true. Heat is absorbed from the surroundings, and the heating value of the produced hydrogen is higher than the electric input. In this case the efficiency relative to electric energy input can be said to be greater than 100%. The maximum theoretical efficiency of a fuel cell is the inverse of that of electrolysis. It is thus impossible to create a perpetual motion machine by combining the two processes.


High temperature electrolysis has also been proposed to produce oxygen on Mars from atmospheric carbon dioxide, using zirconia electrolysis devices. (See In-situ Resource Utilization.)


* [http://www1.eere.energy.gov/solar/pdfs/doctor.pdf U.S. DOE high-temperature electrolysis]


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Electrolysis of water — is the decomposition of water (H2O) into oxygen (O2) and hydrogen gas (H2) due to an electric current being passed through the water. Simple setup for demonstration of electrolysis of water at home. Contents …   Wikipedia

  • Electrolysis — In chemistry and manufacturing, electrolysis is a method of separating chemically bonded elements and compounds by passing an electric current through them.History*1800 William Nicholson and Johann Ritter decomposed water into hydrogen and oxygen …   Wikipedia

  • Electrolyse a haute temperature — Électrolyse à haute température Schéma d électrolyse à haute température. L électrolyse à haute température (ou HTE d après l acronyme anglais de High temperature electrolysis ou électrolyse en phase vapeur) est une méthode actuellement étudiée… …   Wikipédia en Français

  • Électrolyse à haute température — Schéma d électrolyse à haute température. L électrolyse à haute température (ou HTE d après l acronyme anglais de High temperature electrolysis ou électrolyse en phase vapeur) est une méthode actuellement étudiée pour la production d hydrogène à… …   Wikipédia en Français

  • Hydrogen economy — The hydrogen economy is a proposed system of delivering energy using hydrogen. The term hydrogen economy was coined by John Bockris during a talk he gave in 1970 at General Motors (GM) Technical Center.[1] Hydrogen advocates promote hydrogen as… …   Wikipedia

  • Hydrogen production — Hydrogen is commonly produced by extraction from hydrocarbon fossil fuels via a chemical path. Hydrogen may also be extracted from water via biological production in an algae bioreactor, or using electricity (by electrolysis), chemicals (by… …   Wikipedia

  • Chloralkali process — The chloralkali process is an industrial process for the electrolysis of sodium chloride solution (brine). Depending on the method several products beside hydrogen can be produced. If the products are separated, chlorine and sodium hydroxide are… …   Wikipedia

  • Downs cell — The Downs process is an electrochemical method for the commercial preparation of metallic sodium, in which molten NaCl is electrolyzed in a special apparatus called the Downs cell.[1] How it works Schematic diagram of the Downs cell …   Wikipedia

  • Sulfur-iodine cycle — The sulfur iodine cycle (S I cycle) is a series of thermochemical processes used to produce hydrogen.The S I cycle consists of three chemical reactions whose net reactant is water and whose net products are hydrogen and oxygen. All other… …   Wikipedia

  • Castner–Kellner process — The Castner–Kellner process is a method of electrolysis on an aqueous alkali chloride solution (usually sodium chloride solution) to produce the corresponding alkali hydroxide,[1] invented by American Hamilton Castner and Austrian[2] Karl Kellner …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”