Hexeract

Hexeract

A hexeract is a name for a six-dimensional hypercube with 64 vertices, 192 edges, 240 square faces, 160 cubic cells, 60 tesseract 4-faces, and 12 penteract 5-faces.

The name "hexeract" is derived from combining the name tesseract (the "4-cube") with "hex" for six (dimensions) in Greek.

It can also be called a regular dodeca-6-tope or dodecapeton, being made of 12 regular facets.

It is a part of an infinite family of polytopes, called hypercubes. The dual of a penteract can be called a hexacross, and is a part of the infinite family of cross-polytopes.

Applying an "alternation" operation, deleting alternating vertices of the hexeract, creates another uniform polytope, called a demihexeract, (part of an infinite family called demihypercubes), which has 12 demipenteractic and 32 hexateronic facets.

Cartesian coordinates

Cartesian coordinates for the vertices of a hexeract centered at the origin and edge length 2 are: (±1,±1,±1,±1,±1,±1)while the interior of the same consists of all points (x0, x1, x2, x3, x4, x5) with -1 < xi < 1.

Projections

See also

* Other Regular 6-polytopes:
** Heptapeton (6-simplex) - {3,3,3,3,3}
** Hexacross (6-Cross polytope) - {3,3,3,3,4}
* Others in the Hypercubes family
**Square - {4}
**Cube - {4,3}
**Tesseract - {4,3,3}
**Penteract - {4,3,3,3}
**"Hexeract" - {4,3,3,3,3}
**Hepteract - {4,3,3,3,3,3}
**Octeract - {4,3,3,3,3,3,3}
**Enneract - {4,3,3,3,3,3,3,3}
**10-cube - {4,3,3,3,3,3,3,3,3}
**...

References

* Coxeter, H.S.M. "Regular Polytopes", (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 p.296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n>=5)

External links

*
*GlossaryForHyperspace | anchor=Measure | title=Measure polytope
* [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary: hypercube] Garrett Jones


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Hexeract — (hipercubo 6) Proyección ortogonal sobre un Polígono Petrie Tipo Regular Familia hipercubos En geometría de sexta dimensión, un hexeract es el nombre de un miembro de la familia de los hipercubos, con 64 vértices, 192 líneas, 2 …   Wikipedia Español

  • hexeract — noun A six dimensional hypercube Syn: 6 cube …   Wiktionary

  • Pentellated 6-cube — 6 cube …   Wikipedia

  • Hexacross — A hexacross, is a regular 6 polytope with 12 vertices, 60 edges, 160 triangle faces, 240 octahedron cells, 192 5 cell 4 faces , and 64 5 faces .It is a part of an infinite family of polytopes, called cross polytopes or orthoplexes . The dual… …   Wikipedia

  • Hypercube — This article is about the mathematical concept. For the film, see Cube 2: Hypercube. Perspective projections Cube (3 cube) Tesseract (4 cube) In geometry, a hypercube is an n dimensional analogue of a …   Wikipedia

  • Hepteract — A hepteract is a seven dimensional hypercube with 128 vertices, 448 edges, 672 square faces, 560 cubic cells, 280 tesseract 4 faces, 84 penteract 5 faces, and 14 hexeract 6 faces.The name hepteract is derived from combining the name tesseract… …   Wikipedia

  • Octeract — An octeract is an eight dimensional hypercube with 256 vertices, 1024 edges, 1792 square faces, 1792 cubic cells, 1120 tesseract 4 faces, 448 penteract 5 faces, 112 hexeract 6 faces, and 16 hepteract 7 faces.The name octeract is derived from… …   Wikipedia

  • Enneract — An enneract is a nine dimensional hypercube with 512 vertices, 2304 edges, 4608 square faces, 5376 cubic cells, 4032 tesseract 4 faces, 2016 penteract 5 faces, 672 hexeract 6 faces, 144 hepteract 7 faces, and 18 octeract 8 faces.The name enneract …   Wikipedia

  • Polygone de Pétrie — Pour les articles homonymes, voir Petrie. Le polygone de Pétrie d un octaèdre régulier est de forme hexagonale Un polygone de Pétrie est donné par la projection ort …   Wikipédia en Français

  • Tesséract — Hypercube Pour les articles homonymes, voir Hypercube (homonymie). Une projection d un hypercube (dans une image bi dimensionnelle) Un hypercu …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”