Controlled Aerodynamic Instability Phenomena

Controlled Aerodynamic Instability Phenomena

The term Controlled Aerodynamic Instability Phenomena was firstly used by [http://www.cristianotrein.com Cristiano Augusto Trein] in the "Nineteenth KKCNN Symposium on Civil Engineering" [Matsumoto, M.; Trein, C.; Ito, Y.; Okubo, K.; Matsumiya, H.; Kim, G.; “Controlled Aerodynamic Instability Phenomena - An Alternative Approach for Wind Power Generation Systems”, The Nineteenth KKCNN Symposium on Civil Engineering, Japan, 2006.,] held in Kyoto – Japan in 2006. The concept is based on the idea that aerodynamic instability phenomena, such as Karman Vortex Shedding, Flutter, Galloping and Buffeting, can be driven into a controlled motion and be used to extract energy from the flow, becoming an alternative approach for Wind Power Generation systems.

Justification

Nowadays, when a discussion is established around the theme Wind Power Generation, what is promptly addressed is the image of a big wind turbine, with its turbine getting turned by the wind. However, some alternative approaches have already been proposed in the latter decades, showing that the wind turbine is not the only possibility for the exploitation of the wind for power generation purposes.

In 1977 Jeffery [Jeffery, J; “Oscillating Aerofoil Project”, Report from the Pocklington School Design Centre, West Green, Pocklington, York, England., 1977.] experimented with an oscillating aerofoil system based on a vertically-mounted pivoting wing which flapped in the wind. Farthing (www.econologica.org/wingedmills.html) discovered that this free flutter could automatically cease for high wind protection and developed floating and pile based models for pumping surface and well water as well as compressing air with auxiliary battery charging McKinney and DeLaurier [McKinney, W; DeLaurier, J; “The Wingmill: An Oscillating-Wing Windmill”, Journal of Energy vol 5, n°2, pp.109-115., 1981.] in 1981 proposed a system called "Wingmill", based on a rigid horizontal airfoil with articulated pitching and plunging to extract energy from the flow. This system has stimulated Moores [Moores, J.; ” Potential Flow - 2-Dimensional Vortex Panel Model: Applications to Wingmills”, Applied Sciences Bachelor Thesis, Faculty of Applied Science and Engineering – University of Toronto, Canada, 2003.] in 2003 to conduct further investigations on applications of such idea.

Following the same trend, other studies have already been carried out, for example the "Flutter Power Generation System" proposed by Isogai et al. [Isogai, K.; Yamasaki, M.; Matsubara, M.; Asaoka, T.; “Design Study of Elastically Supported Flapping Wing Power Generator”, Proceedings of International Forum on Aeroelasticity and Structural Dynamics, Amsterdam, 2003.] in 2003, which uses the flutter instability caused by the wind on an aerofoil to extract energy from the flow. In this branch, Matsumoto et al. [Matsumoto, M.; Mizuno; K., Okubo, K.; Ito, Y.; Kim, G.; “Fundamental Study on Flutter Generation System”, The Eighteenth KKCNN Symposium on Civil Engineering, Taiwan, 2005.] went further, proposing enhancements for that system and assessing the feasibility of its usage with bluff bodies.

Controlled aerodynamic instability phenomena

The wind interacts with the obstacles it reaches in its way by transferring a part of its energy to those interactions, which are converted into forces over the bodies, leading them to different levels of motion, which are directly dependent on their aeroelastic and geometric characteristics. A large amount of studies and researches has been conducted concerning these interactions and their dependencies, aiming the understanding of the aerodynamic phenomena that arise due to them, such as Karman Vortex Shedding, Galloping, Buffeting and Flutter, mainly regarding bluff bodies. By the understanding of such phenomena it is possible to predict instabilities and their consequent motions, feeding the designers with the data they need in order to arrange the structures properly.

In the great majority of the cases – e.g.: in civil buildings – such motions are useless and undesirable, in a manner that all the designing approaches are focused on avoiding them. However these instabilities may also be used in a profitable manner: if they are controlled and driven to a predictable motion, they can provide mechanical power supply to run, for example, turbines, machinery and electricity generators.

So by using the knowledge acquired by now regarding those aerodynamic instabilities and by developing new features, it is possible to propose ways to stimulate them to an optimal state, using them for power generation purposes. That way, alternative approaches to the windmill may be proposed and developed. Farthing (www.econologica.org/pt.htm) applies the practical requirements for a windmill to greatly whittle down the possibilities.

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Controlled aerodynamic instability phenomena — The term controlled aerodynamic instability phenomena was first used by Cristiano Augusto Trein[1] in the Nineteenth KKCNN Symposium on Civil Engineering [2] held in Kyoto – Japan in 2006. The concept is based on the idea that aerodynamic… …   Wikipedia

  • Kite types — Colorful delta wing kite Kites are tethered flying objects which fly by using aerodynamic lift, requiring wind, (or towing), for generation of airflow over the lifting surfaces. Contents 1 Kite …   Wikipedia

  • Wind power — Wind power: worldwide installed capacity [1] …   Wikipedia

  • climate — /kluy mit/, n. 1. the composite or generally prevailing weather conditions of a region, as temperature, air pressure, humidity, precipitation, sunshine, cloudiness, and winds, throughout the year, averaged over a series of years. 2. a region or… …   Universalium

  • Bicycle and motorcycle dynamics — A computer generated, simplified model of bike and rider demonstrating an uncontrolled right turn. An …   Wikipedia

  • solids, mechanics of — ▪ physics Introduction       science concerned with the stressing (stress), deformation (deformation and flow), and failure of solid materials and structures.       What, then, is a solid? Any material, fluid or solid, can support normal forces.… …   Universalium

  • Список награждённых Национальной медалью науки США — Джошуа Ледерберг (справа) получает Национальную медаль науки из рук Президента США Джорджа Буша старшего Список …   Википедия

  • Rocket engine — RS 68 being tested at NASA s Stennis Space Center. The nearly transparent exhaust is due to this engine s exhaust being mostly superheated steam (water vapor from its propellants, hydrogen and oxygen) …   Wikipedia

  • lake — lake1 /layk/, n. 1. a body of fresh or salt water of considerable size, surrounded by land. 2. any similar body or pool of other liquid, as oil. 3. (go) jump in the lake, (used as an exclamation of dismissal or impatience.) [bef. 1000; ME lak(e) …   Universalium

  • Lake — /layk/, n. Simon, 1866 1945, U.S. engineer and naval architect. * * * I Relatively large body of slow moving or standing water that occupies an inland basin. Lakes are most abundant in high northern latitudes and in mountain regions, particularly …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”