Influenza vaccine

Influenza vaccine

A vaccine is an inoculation designed to increase immunity against a specific disease. The influenza vaccine is an annual vaccine to protect against the highly variable influenza virus.

Purpose and benefits of annual flu vaccination

"Influenza vaccination is the most effective method for preventing influenza virus infection and its potentially severe complications." [Influenza Vaccination: A Summary for Clinicians] [Flu Shots Halve Risk of Death, Cut Illness in Elderly (Update1) :Influenza vaccines ... cut the risk that elderly people will die of the virus in half and reduced the chance of hospitalization by more than a quarter, according to a study released today by the New England Journal of Medicine.] [A Multitude of Vaccine Benefits, Yet Controversy Persists:Public health experts generally agree that after clean water and flush toilets, the most important health advances in history have been vaccinations.By DONALD G. McNEIL Jr.]
An influenza epidemic emerges during each winter's flu season. In the United States alone an estimated 36,000 people die each year from influenza and accompanying opportunistic infections and complications. [Flu shots leave heart failure patients at riskReutersSat Mar 29, 2008

:Influenza causes 36,000 deaths and more than 200,000 hospitalizations in the United States each year, according to the U.S. Centers for Disease Control and Prevention.] The number of annual influenza-related hospitalizations is many times the number of deaths. [Huge flu vaccine trial to be held

March 31, 2008

:"Professor Robert Booy, of the National Centre for Immunisation Research and Surveillance at Westmead in Sydney, said influenza put 15,000 Australians in hospital each year." :...:"About 1500 deaths annually are attributed to the virus and it costs our country millions of dollars annually in lost productivity," Professor Robert Booy said.,23599,23458140-29277,00.html] "The high costs of hospitalizing young children for influenza creates a significant economic burden in the United States, underscoring the importance of preventive flu shots forchildren and the people with whom they have regular contact..." [Young Children Hospitalized for Flu Associated With Higher Costs and Higher Risk Illness.

After analyzing data in three U.S. cities over the course of three fluseasons (2003-2006), the researchers found that 90 percent of thehighest-cost hospitalizations for children were linked to influenza, or flu with a co-infection of the respiratory tract.
Study results presented May 4 at the Pediatric Academic Society annual meeting in Honolulu, Hawaii]

In Canada, the National Advisory Committee on Immunization, the group that advises the Public Health Agency of Canada, currently recommends that everyone aged 2 to 64 years be encouraged to receive annual influenza vaccination, and that children between the age of six and 24 months, and their household contacts, should be considered a high priority for the flu vaccine.U.S. panel recommends all kids get the flu shotUpdated Wed. Feb. 27 2008 1:56 PM News Staff]

In the U.S., the CDC recommends to clinicians that:In general, anyone who wants to reduce their chances of getting influenza can get vaccinated. Vaccination is especially important for people at higher risk of serious influenza complications or people who live with or care for people at higher risk for serious complications. [ [ CDC - Influenza (Flu) | Vaccination: Summary for Clinicians ] ]

Vaccination against influenza is recommended for most members of high-risk groups who would be likely to suffer complications from influenza. Specific recommendations include all children and teenagers, from six months to 18 years; of age;

:In expanding the new upper age limit to 18 years, the aim is to reduce both the time children and parents lose from visits to pediatricians and missing school and the need for antibiotics for complications ...

:An added expected benefit would be indirect — to reduce the number of influenza cases among parents and other household members, and possibly spread to the general community. [Panel Advises Flu Shots for Children Up to Age 18 The New York Times By LAWRENCE K. ALTMANPublished: February 28, 2008 Quoting Dr. Anne Schuchat, who directs the CDC’s program on immunization and respiratory diseases.]

In the event of exposure to H5N1-type (avian influenza), seasonal flu vaccine may also offer some protection against H5N1 infection. [Seasonal Flu Vaccination May Offer Partial Immunity to H5N1] [Cross-Reactive Neuraminidase Antibodies Afford Partial Protection against H5N1 in Mice and Are Present in Unexposed Humans

Matthew R. Sandbulte, Gretchen S. Jimenez, Adrianus C. M. Boon, Larry R. Smith, John J. Treanor, Richard J. Webby*

:"These data reveal that humoral immunity elicited by huN1 can partially protect against H5N1 infection in a mammalian host. Our results suggest that a portion of the human population could have some degree of resistance to H5N1 influenza, with the possibility that this could be induced or enhanced through immunization with seasonal influenza vaccines."]

Efficacy of vaccine

Flu vaccines are available both as an injection of killed virus (or flu shot) and as nasal spray of live attenuated influenza virus (LAIV) (sold as FluMist in the US). Flumist is not recommended for individuals under age 2 or over age 50. [ Summary of Recommendations for Adult Immunization linked from CDC website]

Vaccine is effective against influenza, but not perfect. A study led by Dr. David K. Shay in February, 2008 reported that

:"full immunization against flu provided about a 75 percent effectiveness rate in preventing hospitalizations from influenza complications in the 2005-6 and 2006-7 influenza seasons." ["(The 75 percent rate could range, according to a standard statistical measure known as confidence intervals, from 41 percent to 91 percent.)"

Panel Advises Flu Shots for Children Up to Age 18 The New York Times By LAWRENCE K. ALTMANPublished: February 28, 2008 Quoting Dr. Anne Schuchat, who directs the CDC’s program on immunization and respiratory diseases.]

While no statistically significant advantage emerged for either LAIV (Flumist) or TIV (needle-injected vaccine) over the other in two trials among adults noted by the CDC, the benefit of influenza vaccination over non-vaccination were clear:

"One randomized, double-blind, placebo-controlled challenge study among 92 healthy adults aged 18–41 years assessed the efficacy of both LAIV and TIV in preventing influenza infection when challenged with wild-type strains that were antigenically similar to vaccine strains. The overall efficacy in preventing laboratory-documented influenza from all three influenza strains combined was 85% and 71%, respectively.
In a randomized, double-blind, placebo-controlled trial, conducted among young adults during an influenza season when the majority of circulating H3N2 viruses were antigenically drifted from that season’s vaccine viruses, the efficacy of LAIV and TIV against culture-confirmed influenza was 57% and 77%, respectively.

Neither the comparative advantages of Flumist in the first study nor the apparent advantages of needle-injected vaccine in the second rose to statistical significance. The added benefits of needle-injected vaccine in the second study "was based largely upon a difference in efficacy against influenza B." [ Research ArticleCross-Clade Protective Immune Responses to Influenza Viruses with H5N1 HA and NA Elicited by an Influenza Virus-Like Particle]

Flumist may be comparatively more effective among children. [Flumist is a vaccine of demonstrated effectiveness against seasonal influenza,Influenza vaccine is effective

How effective is the nasal-spray flu vaccine LAIV (FluMist)?

In one large study among children aged 15-85 months, the nasal-spray flu vaccine LAIV (FluMist) reduced the chance of influenza illness by 92% compared with placebo. In a study among adults, the participants were not specifically tested for influenza. However, the study found 19% fewer severe febrile respiratory tract illnesses, 24% fewer respiratory tract illnesses with fever, 23-27% fewer days of illness, 13-28% fewer lost work days, 15-41% fewer health care provider visits, and 43-47% less use of antibiotics compared with placebo.] In studies conducted before final approval for two-year olds and older children, Flumist demonstrated a definite immunological advantage over flu shots in this age group. [

"Although LAIV is not currently licensed for use in children younger than 5 years of age, or in persons with risk factors for influenza complications, several studies have compared the efficacy of LAIV to TIV in these groups. LAIV provided 32% increased protection in preventing culture-confirmed influenza compared with TIV in one study conducted among children aged 6 years and older and adolescents with asthma and 52% increased protection among children aged 6–71 months with recurrent respiratory tract infections. Another study conducted among children aged 6–71 months during 2004– 2005 demonstrated a 55% reduction in cases of culture confirmed influenza among children who received LAIV compared with those who received TIV."

These studies demonstrate that vaccination can be a cost-effective counter-measure to seasonal outbreaks of influenza. [Clinical trials of vaccines] [ [ CDC - Influenza (Flu) | Comparisons of LAIV and TAIV Efficacy ] ]

In most years (16 of the 19 years before 2007), the flu vaccine strains have been a good match for the circulating strains. [:How often are the vaccine and circulating virus strains well matched?

:In recent years the match between the vaccine viruses and those identified during the flu season has usually been good. In 16 of the last 19 U.S. influenza seasons, the viruses in the influenza vaccine have been well matched to the predominant circulating viruses. Since 1988, in fact, there has only been one season (1997-98) when there was very low cross-reaction between the viruses in the vaccine and the predominate circulating virus and two seasons (2003-04 and 1992-93) when there was low cross-reaction.

Questions & AnswersThe 2007-2008 Flu Season

:How often are the vaccine and circulating virus strains well matched?] In other flu seasons like that of 2007/2008, the match was less useful. But even a mis-matched vaccine can often provide some protection:

: ... [A] antibodies made in response to vaccination with one strain of influenza viruses can provide protection against different, but related strains. A less than ideal match may result in reduced vaccine effectiveness against the variant viruses, but it still can provide enough protection to prevent or lessen illness severity and prevent flu-related complications. In addition, it’s important to remember that the influenza vaccine contains three virus strains so the vaccine can also protect against the other two viruses. For these reasons, even during seasons when there is a less than ideal match, CDC continues to recommend influenza vaccination. This is particularly important for people at high risk for serious flu complications and their close contacts. [Questions & AnswersThe 2007-2008 Flu Season

:Can the vaccine provide protection even if the vaccine is not a “good” match?]

Annual re-formulation of flu vaccine

Each year the influenza virus changes and different strains become dominant. Due to the high mutation rate of the virus a particular vaccine formulation usually works for only about a year. The World Health Organization coordinates the contents of the vaccine each year to contain the most likely strains of the virus to attack the next year.

The annually updated trivalent flu vaccine for the 2007–2008 season consists of hemagglutinin (HA) surface glycoprotein components from influenza H3N2, H1N1, and B influenza viruses. [ [ CDC Flu Vaccine Composition 07/08] ]

History of the flu vaccine

Vaccines are used in both humans and nonhumans. Human vaccine is meant unless specifically identified as a veterinary, poultry or livestock vaccine.


The first influenza pandemic was recorded in 1580; since this time, various methods have been employed to eradicate its cause.

cite journal
author=Webster, R. G. and Walker, E. J. | title=The world is teetering on the edge of a pandemic that could kill a large fraction of the human population | journal=American Scientist | year=2003 | pages=122 | volume=91 | issue=2 |url= | doi=10.1511/2003.2.122

] The etiological cause of influenza, the orthomyxoviridae was finally discovered by the Medical Research Council (MRC) of the United Kingdom in 1933.

cite news
author=Blakemore, C.
title=Battle of time, luck and science
publisher=The Sunday Times - Britain

Known flu pandemics: [ [ Influenza PDF] .]
* 1889–90 — Asiatic (Russian) Flu, mortality rate said to be 0.75–1 death per 1000 possibly H2N2
* 1900 — possibly H3N8
* 1918–20 – Spanish Flu, 500 million ill, at least 20–40 million died of H1N1
* 1957–58 – Asian Flu, 1 to 1.5 million died of H2N2
* 1968–69 – Hong Kong Flu, 3/4 to 1 million died of H3N2

Flu vaccine origins and development

In the world wide Spanish flu pandemic of 1918, "Physicians tried everything they knew, everything they had ever heard of, from the ancient art of bleeding patients, to administering oxygen, to developing new vaccines and sera (chiefly against what we now call "Hemophilus influenzae"—a name derived from the fact that it was originally considered the etiological agent—and several types of pneumococci). Only one therapeutic measure, transfusing blood from recovered patients to new victims, showed any hint of success." [ [ The Threat of Pandemic Influenza: Are We Ready? Workshop Summary (2005) (free online book)] page 62]

In 1931, viral growth in embryonated hens' eggs was discovered, and in the 1940s, the US military developed the first approved inactivated vaccines for influenza, which were used in the Second World War (Baker 2002, Hilleman 2000). Greater advances were made in vaccinology and immunology, and vaccines became safer and mass-produced. Today, thanks to the advances of molecular technology, we are on the verge of making influenza vaccines through the genetic manipulation of influenza genes (Couch 1997, Hilleman 2002). [ [ Influenza Report] article "Vaccines" by Stephen Korsman]

Flu vaccine acceptance

According to the CDC: "Influenza vaccination is the primary method for preventing influenza and its severe complications. [...] Vaccination is associated with reductions in influenza-related respiratory illness and physician visits among all age groups, hospitalization and death among persons at high risk, otitis media among children, and work absenteeism among adults. Although influenza vaccination levels increased substantially during the 1990s, further improvements in vaccine coverage levels are needed". [ [ CDC] report "Prevention and Control of Influenza" published April 12, 2002]

The current egg-based technology for producing influenza vaccine was created in the 1950s. [ [ NEJM Volume 352:1839-1842 May 5, 2005 Number 18] article "Preparing for the Next Pandemic" by Michael T. Osterholm] In the U.S. swine flu scare of 1976, President Gerald Ford was confronted with a potential swine flu pandemic. The vaccination program was plagued by delays and public relations problems, but about 24% of the population was vaccinated by the time the program was canceled with much concern and doubt about flu vaccination. [ The Sky is Falling: An Analysis of the Swine Flu Affair of 1976] ]

Current status

Influenza research includes molecular virology, molecular evolution, pathogenesis, host immune responses, genomics, and epidemiology. These help in developing influenza countermeasures such as vaccines, therapies and diagnostic tools. Improved influenza countermeasures require basic research on how viruses enter cells, replicate, mutate, evolve into new strains and induce an immune response. The Influenza Genome Sequencing Project is creating a library of influenza sequences that will help us understand what makes one strain more lethal than another, what genetic determinants most affect immunogenicity, and how the virus evolves over time. Solutions to limitations in current vaccine methods are being researched.

Clinical trials of vaccines

A vaccine is assessed in terms of the reduction of the risk of disease produced by vaccination, its "efficacy". In contrast, in the field, the "effectiveness" of a vaccine is the practical reduction in risk for an individual when they are vaccinated under real-world conditions. [cite journal | author = Fedson D | title = Measuring protection: efficacy versus effectiveness | journal = Dev Biol Stand | volume = 95 | issue = | pages = 195–201 | year = | pmid = 9855432] Measuring efficacy of influenza vaccines is relatively simple, as the immune response produced by the vaccine can be assessed in animal models, or the amount of antibody produced in vaccinated people can be measured, [cite journal | author = Stephenson I, Zambon M, Rudin A, Colegate A, Podda A, Bugarini R, Del Giudice G, Minutello A, Bonnington S, Holmgren J, Mills K, Nicholson K | title = Phase I evaluation of intranasal trivalent inactivated influenza vaccine with nontoxigenic Escherichia coli enterotoxin and novel biovector as mucosal adjuvants, using adult volunteers | journal = J Virol | volume = 80 | issue = 10 | pages = 4962–70 | year = 2006 | pmid = 16641287 | doi = 10.1128/JVI.80.10.4962-4970.2006] or most rigorously, by immunising adult volunteers and then challenging with virulent influenza virus.cite journal | author = Treanor J, Kotloff K, Betts R, Belshe R, Newman F, Iacuzio D, Wittes J, Bryant M | title = Evaluation of trivalent, live, cold-adapted (CAIV-T) and inactivated (TIV) influenza vaccines in prevention of virus infection and illness following challenge of adults with wild-type influenza A (H1N1), A (H3N2), and B viruses | journal = Vaccine | volume = 18 | issue = 9-10 | pages = 899–906 | year = 1999 | pmid = 10580204 | doi = 10.1016/S0264-410X(99)00334-5] In studies such as these, influenza vaccines showed high efficacy and produced a protective immune response. For ethical reasons, such challenge studies cannot be performed in the population most at risk from influenza – the elderly and young children. However, studies on the effectiveness of flu vaccines in the real world are uniquely difficult. The vaccine may not be matched to the virus in circulation; virus prevalence varies widely between years, and influenza is often confused with other flu-like illnesses.cite journal | author = Jefferson T | title = Influenza vaccination: policy versus evidence | journal = BMJ | volume = 333 | issue = 7574 | pages = 912–5 | year = 2006 | pmid = 17068038 | doi = 10.1136/bmj.38995.531701.80]

Nevertheless, multiple clinical trials of both live and inactivated influenza vaccines have been performed and their results pooled and analyzed in several recent meta-analyses. Studies on live vaccines have very limited data, but these preparations may be more effective than inactivated vaccines. The meta-analyses examined the efficacy and effectiveness of inactivated vaccines in adults,cite journal | author = Demicheli V, Rivetti D, Deeks J, Jefferson T | title = Vaccines for preventing influenza in healthy adults | journal = Cochrane Database Syst Rev | volume = | issue = | pages = CD001269 | year = 2004| pmid = 15266445 | doi = 10.1002/14651858.CD001269.pub2] children,cite journal | author = Smith S, Demicheli V, Di Pietrantonj C, Harnden A, Jefferson T, Matheson N, Rivetti A | title = Vaccines for preventing influenza in healthy children | journal = Cochrane Database Syst Rev | volume = | issue = | pages = CD004879 | year = 2006| pmid = 16437500 | doi = 10.1002/14651858.CD004879.pub2] and the elderly.cite journal | author = Rivetti D, Jefferson T, Thomas R, Rudin M, Rivetti A, Di Pietrantonj C, Demicheli V | title = Vaccines for preventing influenza in the elderly | journal = Cochrane Database Syst Rev | volume = 3 | issue = | pages = CD004876 | year = 2006| pmid = 16856068 | doi = 10.1002/14651858.CD004876.pub2] cite journal | author = Jefferson T, Rivetti D, Rivetti A, Rudin M, Di Pietrantonj C, Demicheli V | title = Efficacy and effectiveness of influenza vaccines in elderly people: a systematic review | journal = Lancet | volume = 366 | issue = 9492 | pages = 1165–74 | year = 2005 | pmid = 16198765 | doi = 10.1016/S0140-6736(05)67339-4] In adults, vaccines show high efficacy against the targeted strains, but low effectiveness overall, so the benefits of vaccination are small, with a one-quarter reduction in risk of contracting influenza but no effect on the rate of hospitalization. In children, vaccines again showed high efficacy, but low effectiveness in preventing "flu-like illness", in children under two the data are extremely limited, but vaccination appeared to confer no measurable benefit. In the elderly, vaccination does not reduce the frequency of influenza, but may reduce pneumonia, hospital admission and deaths from influenza or pneumonia. The measured effectiveness of the vaccine in the elderly varies depending on whether the population studied is in residential care homes, or in the community, with the vaccine appearing more effective in an institutional environment. This apparent effect may be due to selection bias affecting the analysis of the data, or differences in diagnosis and surveillance.

Overall, the benefit of influenza vaccination is clearest in the elderly, with vaccination in children of questionable benefit. Vaccination of adults is not predicted to produce significant improvements in public health. The apparent contradiction between vaccines with high efficacy, but low effectiveness, may reflect the difficulty in diagnosing influenza under clinical conditions and the large number of strains circulating in the population.

Vaccination recommendations

Various public health organizations have recommended that yearly influenza vaccination be routinely offered to patients at risk of complications of influenza:
*the elderly (UK recommendation is those aged 65 or above)
*patients with chronic lung diseases (asthma, COPD, etc.)
*patients with chronic heart diseases (congenital heart disease, chronic heart failure, ischaemic heart disease)
*patients with chronic liver diseases (including liver cirrhosis)
*patients who are immunosuppressed (those with HIV or who are receiving drugs to suppress the immune system such as chemotherapy and long-term steroids) and their household contacts
*all people who are institutionalized in an environment where influenza can spread rapidly, such as in prisons or nursing homes
*healthcare workers (both to prevent sickness and to prevent spread to patients)cite journal | author=Thomas RE, Jefferson TO, Demicheli V, Rivetti D | title=Influenza vaccination for health-care workers who work with elderly people in institutions: a systematic review | journal=Lancet Infect Dis | year=2006 | volume=6 | issue=5 | pages=273–279 | pmid=16631547 | doi=10.1016/S1473-3099(06)70462-5]
* pregnant women [ "Should pregnant women get the flu shot?"] , Dr. Judith Reichman, MSNBC, 2007 Oct. 1.] [ [ Mother’s Flu Shot Protects Newborns] Newswise, Retrieved on September 17, 2008.]

In the United States a person aged 50–64 is nearly ten times more likely to die an influenza-associated death than a younger person, and a person over age 65 is over ten times more likely to die an influenza-associated death than the 50–64 age group. [cite journal | author=Thompson WW, Shay DK, Weintraub E, Brammer L, Cox N, Anderson LJ, Fukuda K | title=Mortality associated with influenza and respiratory syncytial virus in the United States | journal=The Journal Of The American Medical Association | volume=289 | issue=2 | year=2003 | pages=179–186 | pmid=12517228 | doi=10.1001/jama.289.2.179] Vaccination of those over age 65 reduces influenza-associated death by about 50%. [cite journal | author=Hak E, Buskens E, van Essen GA, de Bakker DH, Grobbee DE, Tacken MA, van Hout BA, Verheij TJ | title=Clinical effectiveness of vaccination in persons younger than 65 years with high-risk medical conditions: the PRISMA study | journal=Archives Of Internal Medicine | volume=165 | issue=3 | year=2005 | pages=274–280 | pmid=15710789 | doi=10.1001/archinte.165.3.274] [cite journal | author=Nichol KL, Nordin J, Mullooly J, Lask R, Fillbrandt K, Iwane M | title=Influenza vaccination and reduction in hospitalizations for cardiac disease and stroke among the elderly | journal=The New England Journal Of Medicine | volume=348 | issue=14 | year=2003 | pages=1322–1332 | pmid=12672859 | doi=10.1056/NEJMoa025028] However, it is unlikely that the vaccine completely explains the results since elderly people who get vaccinated are probably more healthy and health-conscious than those who do not. [cite news | author=Woloshin S, Schwartz LM, Welch HG | title=A shot of fear | publisher = The Washington Post | date = 2005-10-25 | url = | accessdate = 2006-11-09 ] Elderly participants randomized to a high-dose group (60 micrograms) had antibody levels 44 to 79 percent higher than did those who received the normal dose of vaccine. Elderly volunteers receiving the higher dose were more likely to achieve protective levels of antibody. [W Keitel "et al". Safety of high doses of influenza vaccine and effect on antibody responses in elderly persons "Archives of Internal Medicine" DOI: 10.1001/archinternmed.166.10.1121 (2006). c.f., NIAID Study Finds Higher Dose Of Flu Vaccine Improves Immune Response In The Elderly]

As mortality is high among infants who contract influenza, the household contacts and caregivers of infants should be vaccinated to reduce the risk of passing an influenza infection to the infant.

Data from the years when Japan required annual flu vaccinations for school-aged children indicate that vaccinating children—the group most likely to catch and spread the disease—has a strikingly positive effect on reducing mortality among older people: one life saved for every 420 children who received the flu vaccine. [ [ NEJM - The Japanese Experience with Vaccinating Schoolchildren against Influenza ] ] This may be due to herd immunity or to direct causes, such as individual older people not being exposed to influenza. For example, retired grandparents often risk infection by caring for their sick grandchildren in households where the parents can't take time off work or are sick themselves.

ide effects

Side effects of the inactivated/dead flu vaccine injection are:
* mild soreness
* redness
* swelling where the shot was given
* fever
* achesThese problems usually begin soon after the injection, and last 1–2 days. [ [ Inactivated Influenza Vaccine 2007-2008 - What You Need To Know ] ]

Side effects of the activated/live/LAIV flu nasal spray vaccine:Some children and adolescents 2–17 years of age have reported mild reactions, including:
* runny nose, nasal congestion or cough
* fever
* headache and muscle aches
* wheezing
* abdominal pain or occasional vomiting or diarrhea [ flu-LAIV 08-Final.qxp ] ] Some adults 18–49 years of age have reported:
* runny nose or nasal congestion
* sore throat
* cough, chills, tiredness/weakness
* headache

Flu vaccine virus selection

Each year, three strains are chosen for selection in that year's flu vaccination by the WHO Global Influenza Surveillance Network. The chosen strains are the H1N1, H3N2, and Type-B strains thought most likely to cause significant human suffering in the coming season.

:"The WHO Global Influenza Surveillance Network was established in 1952. The network comprises 4 WHO Collaborating Centres (WHO CCs) and 112 institutions in 83 countries, which are recognized by WHO as WHO National Influenza Centres (NICs). These NICs collect specimens in their country, perform primary virus isolation and preliminary antigenic characterization. They ship newly isolated strains to WHO CCs for high level antigenic and genetic analysis, the result of which forms the basis for WHO recommendations on the composition of influenza vaccine for the Northern and Southern Hemisphere each year." [ [ WHO] article "Global influenza surveillance"]

The Global Influenza Surveillance Network's selection of viruses for the vaccine manufacturing process is based on its best estimate of which strains will be predominant the next year, amounting in the end to well-informed but fallible guesswork. [ [ Keeping ahead of flu comes down to guessing game : Health and Fitness : Knoxville News Sentinel ] ]

Flu vaccine manufacturing

Flu vaccine is usually grown in fertilized chicken eggs. Both types of flu vaccines are contraindicated for those with severe allergies to egg proteins and people with a history of Guillain-Barré syndrome. [ [ CDC] ]

On October 5 2004, Chiron Corporation, a corporation contracted to deliver half of the expected flu vaccine for the United States and a significant portion to the UK, issued a press release [ [ Chiron] ] that stated it was unable to dispense its stock for the 2004-2005 season, due to suspension of the corporation's license to produce the vaccine by the Medicines and Healthcare Products Regulatory Agency. However, the Centers for Disease Control and Prevention took swift action to enlist the help of other companies such as MedImmune and Sanofi pasteur to supply vaccine in high-risk populations in the United States.

Most injection-based flu vaccines intended for adults in the United States still contain Thiomersal. Despite some controversy, the World Health Organization has concluded that there is no evidence of toxicity from thimerosal in vaccines and no reason on grounds of safety to change to more-expensive single-dose administration. [cite web |title= Thiomersal and vaccines |author= Global Advisory Committee on Vaccine Safety |publisher= World Health Organization |url= |date=2006-07-14 |accessdate=2007-11-20]

As of November 2007, both the conventional injection and the nasal spray are manufactured using chicken eggs. The European Union has also approved Optaflu, a vaccine produced by Novartis using vats of animal cells. This technique is expected to be more scalable and avoid problems with eggs, such as allergic reactions and incompatibility with strains that affect avians like chickens. A DNA-based vaccination, which is hoped to be even faster to manufacture, is currently in clinical trials, but has not yet been proven safe and effective. Research continues into the idea of a "universal" influenza vaccine (but no vaccine candidates have been announced) which would not need to be tailored to work on particular strains, but would be effective against a broad variety of influenza viruses. [ [ New and Old Ways to Make Flu Vaccines] , 8 November 2007, National Public Radio.]


Vaccines have been formulated against several of the avian H5N1 influenza varieties. Vaccination of poultry against the ongoing H5N1 epizootic is widespread in certain countries. Some vaccines also exist for use in humans, and others are in testing, but none have been made available to civilian populations, nor produced in quantities sufficient to protect more than a tiny fraction of the earth's population in the event that an H5N1 pandemic breaks out.

Three H5N1 vaccines for humans have been licensed as of June 2008: [ [ CIDRAP] article "Australia approves CSL's H5N1 vaccine" published June 17, 2008]
*Sanofi Pasteur's vaccine approved by the United States in April 2007,
*GlaxoSmithKline's vaccine Pandemrix approved by the European Union in May 2008, and
*CSL Limited's vaccine approved by Australia in June 2008.All are produced in eggs and would require many months to be altered to a pandemic version.

H5N1 continually mutates, meaning vaccines based on current samples of avian H5N1 cannot be depended upon to work in the case of a future pandemic of H5N1. While there can be some cross-protection against related flu strains, the best protection would be from a vaccine specifically produced for any future pandemic flu virus strain. Dr. Daniel Lucey, co-director of the Biohazardous Threats and Emerging Diseases graduate program at Georgetown University, has made this point, "There is no H5N1 pandemic so there can be no pandemic vaccine." However, "pre-pandemic vaccines" have been created; are being refined and tested; and do have some promise both in furthering research and preparedness for the next pandemic. Vaccine manufacturing companies are being encouraged to increase capacity so that if a pandemic vaccine is needed, facilities will be available for rapid production of large amounts of a vaccine specific to a new pandemic strain.

Problems with H5N1 vaccine production include:
*lack of overall production capacity
*lack of surge production capacity (it is impractical to develop a system that depends on hundreds of millions of 11-day old specialized eggs on a standby basis)
*the pandemic H5N1 might be lethal to chickens

Cell culture (cell-based) manufacturing technology can be applied to influenza vaccines as they are with most viral vaccines and thereby solve the problems associated with creating flu vaccines using chicken eggs as is currently done. [According to the U.S. HHS (United States Department of Health & Human Services) Pandemic Influenza Plan Appendix F: Current HHS Activities last revised on November 8, 2005 at :

:Currently, influenza vaccine for the annual, seasonal influenza program comes from four manufacturers. However, only a single manufacturer produces the annual vaccine entirely within the U.S. Thus, if a pandemic occurred and existing U.S.-based influenza vaccine manufacturing capacity was completely diverted to producing a pandemic vaccine, supply would be severely limited. Moreover, because the annual influenza manufacturing process takes place during most of the year, the time and capacity to produce vaccine against potential pandemic viruses for a stockpile, while continuing annual influenza vaccine production, is limited. Since supply will be limited, it is critical for HHS to be able to direct vaccine distribution in accordance with predefined groups (see [ Appendix D] ); HHS will ensure the building of capacity and will engage states in a discussion about the purchase and distribution of pandemic influenza vaccine.

:Vaccine production capacity: The protective immune response generated by current influenza vaccines is largely based on viral hemagglutinin (HA) and neuraminidase (NA) antigens in the vaccine. As a consequence, the basis of influenza vaccine manufacturing is growing massive quantities of virus in order to have sufficient amounts of these protein antigens to stimulate immune responses. Influenza vaccines used in the United States and around world are manufactured by growing virus in fertilized hens’ eggs, a commercial process that has been in place for decades. To achieve current vaccine production targets millions of 11-day old fertilized eggs must be available every day of production.

:In the near term, further expansion of these systems will provide additional capacity for the U.S.-based production of both seasonal and pandemic vaccines, however, the surge capacity that will be needed for a pandemic response cannot be met by egg-based vaccine production alone, as it is impractical to develop a system that depends on hundreds of millions of 11-day old specialized eggs on a standby basis. In addition, because a pandemic could result from an avian influenza strain that is lethal to chickens, it is impossible to ensure that eggs will be available to produce vaccine when needed.

:In contrast, cell culture manufacturing technology can be applied to influenza vaccines as they are with most viral vaccines (e.g., polio vaccine, measles-mumps-rubella vaccine, chickenpox vaccine). In this system, viruses are grown in closed systems such as bioreactors containing large numbers of cells in growth media rather than eggs. The surge capacity afforded by cell-based technology is insensitive to seasons and can be adjusted to vaccine demand, as capacity can be increased or decreased by the number of bioreactors or the volume used within a bioreactor. In addition to supporting basic research on cell-based influenza vaccine development, HHS is currently supporting a number of vaccine manufacturers in the advanced development of cell-based influenza vaccines with the goal of developing U.S.-licensed cell-based influenza vaccines produced in the United States.] [cite journal | author = Bardiya N, Bae J | title = Influenza vaccines: recent advances in production technologies | url= | journal = Appl Microbiol Biotechnol | volume = 67 | issue = 3 | pages = 299–305 | year = 2005 | pmid = 15660212 | doi = 10.1007/s00253-004-1874-1] The US government has purchased from Sanofi Pasteur and Chiron Corporation several million doses of vaccine meant to be used in case of an influenza pandemic of H5N1 avian influenza and is conducting clinical trials with these vaccines. [ [ New York Times article ""Doubt Cast on Stockpile of a Vaccine for Bird Flu""] by Denise Grady. Published: March 30, 2006. Accessed 19 Oct 06] Researchers at the University of Pittsburgh have had success with a genetically engineered vaccine that took only a month to make and completely protected chickens from the highly pathogenic H5N1 virus. [ [,70102-0.html?tw=wn_index_7 Wired News] [ JVI] ]

According to the United States Department of Health & Human Services::In addition to supporting basic research on cell-based influenza vaccine development, HHS is currently supporting a number of vaccine manufacturers in the advanced development of cell-based influenza vaccines with the goal of developing U.S.-licensed cell-based influenza vaccines produced in the United States. Dose-sparing technologies. Current U.S.-licensed vaccines stimulate an immune response based on the quantity of HA (hemagglutinin) antigen included in the dose. Methods to stimulate a strong immune response using less HA antigen are being studied in H5N1 and H9N2 vaccine trials. These include changing the mode of delivery from intramuscular to intradermal and the addition of immune-enhancing adjuvant to the vaccine formulation. Additionally, HHS is soliciting contract proposals from manufacturers of vaccines, adjuvants, and medical devices for the development and licensure of influenza vaccines that will provide dose-sparing alternative strategies. [ [ Department of Health & Human Services] ]

Chiron Corporation is now recertified and under contract with the National Institutes of Health to produce 8,000–10,000 investigational doses of Avian Flu (H5N1) vaccine. MedImmune and Aventis Pasteur are under similar contracts. [ [ NAID - 2004 News] [ NAID - 2005 News] ] The United States government hopes to obtain enough vaccine in 2006 to treat 4 million people. However, it is unclear whether this vaccine would be effective against a hypothetical mutated strain that would be easily transmitted through human populations, and the shelflife of stockpiled doses has yet to be determined. [ [ NPR] ]

The "New England Journal of Medicine" reported on March 30, 2006 on one of dozens of vaccine studies currently being conducted. The Treanor et al. study was on vaccine produced from the human isolate (A/Vietnam/1203/2004 H5N1) of a virulent clade 1 influenza A (H5N1) virus with the use of a plasmid rescue system, with only the hemagglutinin and neuraminidase genes expressed and administered without adjuvant. "The rest of the genes were derived from an avirulent egg-adapted influenza A/PR/8/34 strain. The hemagglutinin gene was further modified to replace six basic amino acids associated with high pathogenicity in birds at the cleavage site between hemagglutinin 1 and hemagglutinin 2. Immunogenicity was assessed by microneutralization and hemagglutination-inhibition assays with the use of the vaccine virus, although a subgroup of samples were tested with the use of the wild-type influenza A/Vietnam/1203/2004 (H5N1) virus." The results of this study combined with others scheduled to be completed by spring 2007 is hoped will provide a highly immunogenic vaccine that is cross-protective against heterologous influenza strains. [ [ New England Journal of Medicine] Volume 354:1411-1413 - March 30, 2006 - Number 13 - "Vaccines against Avian Influenza — A Race against Time"]

On August 18, 2006. the World Health Organization changed the H5N1 strains recommended for candidate vaccines for the first time since 2004. "The WHO's new prototype strains, prepared by reverse genetics, include three new H5N1 subclades. The hemagglutinin sequences of most of the H5N1 avian influenza viruses circulating in the past few years fall into two genetic groups, or clades. Clade 1 includes human and bird isolates from Vietnam, Thailand, and Cambodia and bird isolates from Laos and Malaysia. Clade 2 viruses were first identified in bird isolates from China, Indonesia, Japan, and South Korea before spreading westward to the Middle East, Europe, and Africa. The clade 2 viruses have been primarily responsible for human H5N1 infections that have occurred during late 2005 and 2006, according to WHO. Genetic analysis has identified six subclades of clade 2, three of which have a distinct geographic distribution and have been implicated in human infections:
* Subclade 1, Indonesia
* Subclade 2, Middle East, Europe, and Africa
* Subclade 3, ChinaOn the basis of the three subclades, the WHO is offering companies and other groups that are interested in pandemic vaccine development these three new prototype strains:
* An A/Indonesia/2/2005-like virus
* An A/Bar headed goose/Quinghai/1A/2005-like virus
* An A/Anhui/1/2005-like virus [...] Until now, researchers have been working on prepandemic vaccines for H5N1 viruses in clade 1. In March, the first clinical trial of a U.S. vaccine for H5N1 showed modest results. In May, French researchers showed somewhat better results in a clinical trial of an H5N1 vaccine that included an adjuvant. Vaccine experts aren't sure if a vaccine effective against known H5N1 viral strains would be effective against future strains. Although the new viruses will now be available for vaccine research, WHO said clinical trials using the clade 1 viruses should continue as an essential step in pandemic preparedness, because the trials yield useful information on priming, cross-reactivity, and cross-protection by vaccine viruses from different clades and subclades." [ [ CIDRAP News] article "WHO changes H5N1 strains for pandemic vaccines, raising concern over virus evolution" published August 18, 2006] [ [ WHO (PDF}] article "Antigenic and genetic characteristics of H5N1 viruses and candidate H5N1 vaccine viruses developed for potential use as pre-pandemic vaccines" published August 18, 2006]

As of November 2006, the United States Department of Health and Human Services still had enough H5N1 pre-pandemic vaccine to treat about 3 million people (5.9 million full-potency doses) in spite of 0.2 million doses used for research and 1.4 million doses that have begun to lose potency (from the original 7.5 million full-potency doses purchased from Sanofi Pasteur and Chiron Corp.). The expected shelf life of seasonal flu vaccine is about a year so the fact that most of the H5N1 pre-pandemic stockpile is still good after about 2 years is considered encouraging. [ [ CIDRAP] article "HHS: Most H5N1 vaccine on hand is still potent" published November 17, 2006]

Flu seasons

2003–2004 season (Northern Hemisphere)

The production of flu vaccine requires a lead time of about six months before the season. It is possible that by flu season a strain becomes common for which the vaccine does not provide protection. In the 2003–2004 season the vaccine was produced to protect against A/Panama, A/New Caledonia, and B/Hong Kong. A new strain, A/Fujian, was discovered after production of the vaccine started and vaccination gave only partial protection against this strain.

Nature magazine reported that the Influenza Genome Sequencing Project, using phylogenetic analysis of 156 H3N2 genomes, "explains the appearance, during the 2003–2004 season, of the 'Fujian/411/2002'-like strain, for which the existing vaccine had limited effectiveness" as due to an epidemiologically significant reassortment. "Through a reassortment event, a minor clade provided the haemagglutinin gene that later became part of the dominant strain after the 2002–2003 season. Two of our samples, A/New York/269/2003 (H3N2) and A/New York/32/2003 (H3N2), show that this minor clade continued to circulate in the 2003–2004 season, when most other isolates were reassortants." [ [ Nature] ]

According to the CDC::During the 2003–2004 influenza season, influenza A (H1), A (H3N2), and B viruses co-circulated worldwide, and influenza A (H3N2) viruses predominated. Several Asian countries reported widespread outbreaks of avian influenza A (H5N1) among poultry. In Vietnam and Thailand, these outbreaks were associated with severe illnesses and deaths among humans. In the United States, the 2003–2004 influenza season began earlier than most seasons, peaked in December, was moderately severe in terms of its impact on mortality, and was associated predominantly with influenza A (H3N2) viruses. [ CDC] article "Update: Influenza Activity — United States and Worldwide, 2003–04 Season, and Composition of the 2004–05 Influenza Vaccine" published July 2, 2004 ]

During September 28, 2003 &ndash; May 22, 2004, WHO and NREVSS collaborating laboratories in the United States tested 130,577 respiratory specimens for influenza viruses; 24,649 (18.9%) were positive. Of these, 24,393 (99.0%) were influenza A viruses, and 249 (1.0%) were influenza B viruses. Among the influenza A viruses, 7,191 (29.5%) were subtyped; 7,189 (99.9%) were influenza A (H3N2) viruses, and two (0.1%) were influenza A (H1) viruses. The proportion of specimens testing positive for influenza first increased to >10% during the week ending October 25, 2003 (week 43), peaked at 35.2% during the week ending November 29 (week 48), and declined to <10% during the week ending January 17, 2004 (week 2). The peak percentage of specimens testing positive for influenza during the previous four seasons had ranged from 23% to 31% and peaked during late December to late February.

As of June 15, 2004, CDC had antigenically characterized 1,024 influenza viruses collected by U.S. laboratories since October 1, 2003: 949 influenza A (H3N2) viruses, three influenza A (H1) viruses, one influenza A (H7N2) virus, and 71 influenza B viruses. Of the 949 influenza A (H3N2) isolates characterized, 106 (11.2%) were similar antigenically to the vaccine strain A/Panama/2007/99 (H3N2), and 843 (88.8%) were similar to the drift variant, A/Fujian/411/2002 (H3N2). Of the three A (H1) isolates that were characterized, two were H1N1 viruses, and one was an H1N2 virus. The hemagglutinin proteins of the influenza A (H1) viruses were similar antigenically to the hemagglutinin of the vaccine strain A/New Caledonia/20/99. Of the 71 influenza B isolates that were characterized, 66 (93%) belonged to the B/Yamagata/16/88 lineage and were similar antigenically to B/Sichuan/379/99, and five (7%) belonged to the B/Victoria/2/87 lineage and were similar antigenically to the corresponding vaccine strain B/Hong Kong/330/2001.

;H9N2In December 2003, one confirmed case of avian influenza A (H9N2) virus infection was reported in a child aged five years in Hong Kong. The child had fever, cough, and nasal discharge in late November, was hospitalized for two days, and fully recovered. The source of this child's H9N2 infection is unknown.

;H5N1During January&ndash;March 2004, a total of 34 confirmed human cases of avian influenza A (H5N1) virus infection were reported in Vietnam and Thailand. The cases were associated with severe respiratory illness requiring hospitalization and a case-fatality proportion of 68% (Vietnam: 22 cases, 15 deaths; Thailand: 12 cases, eight deaths). A substantial proportion of the cases were among children and young adults (i.e., persons aged 5–24 years). These cases were associated with widespread outbreaks of highly pathogenic H5N1 influenza among domestic poultry.

;H7N3During March 2004, health authorities in Canada reported two confirmed cases of avian influenza A (H7N3) virus infection in poultry workers who were involved in culling of poultry during outbreaks of highly pathogenic H7N3 on farms in the Fraser River Valley, British Columbia. One patient had unilateral conjunctivitis and nasal discharge, and the other had unilateral conjunctivitis and headache. Both illnesses resolved without hospitalization.

;H7N2During the 2003&ndash;2004 influenza season, a case of avian influenza A (H7N2) virus infection was detected in an adult male from New York, who was hospitalized for upper and lower respiratory tract illness in November 2003. Influenza A (H7N2) virus was isolated from a respiratory specimen from the patient, whose acute symptoms resolved. The source of this person's infection is unknown.

2004 season (Southern Hemisphere)

The composition of influenza virus vaccines for use in the 2004 Southern Hemisphere influenza season recommended by the World Health Organization was:
* an A/New Caledonia/20/99(H1N1)-like virus
* an A/Fujian/411/2002(H3N2)-like virus (A/Kumamoto/102/2002 and A/Wyoming/3/2003 were egg-grown A/Fujian/411/2002-like viruses)
* a B/Hong Kong/330/2001-like virus (B/Shandong/7/97, B/Hong Kong/330/2001 and B/Hong Kong/1434/2002 were among those used at the time. B/Brisbane/32/2002 was also available.) [ [ WHO website recommendation for the 2004 season] ] [ [ WHO &mdash; Recommended composition of influenza virus vaccines for use in the 2004 influenza season] ]

2004–2005 season (Northern Hemisphere)

According to the CDC::On the basis of antigenic analyses of recently isolated influenza viruses, epidemiologic data, and postvaccination serologic studies in humans, the Food and Drug Administration's Vaccines and Related Biological Products Advisory Committee (VRBPAC) recommended that the 2004&ndash;05 trivalent influenza vaccine for the United States contain A/New Caledonia/20/99-like (H1N1), A/Fujian/411/2002-like (H3N2), and B/Shanghai/361/2002-like viruses. Because of the growth properties of the A/Wyoming/3/2003 and B/Jiangsu/10/2003 viruses, U.S. vaccine manufacturers are using these antigenically equivalent strains in the vaccine as the H3N2 and B components, respectively. The A/New Caledonia/20/99 virus will be retained as the H1N1 component of the vaccine.

2005 season (Southern Hemisphere)

The composition of influenza virus vaccines for use in the 2005 Southern Hemisphere influenza season recommended by the World Health Organization was:
* an A/New Caledonia/20/99(H1N1)-like virus;
* an A/Wellington/1/2004(H3N2)-like virus;
* a B/Shanghai/361/2002-like virus (B/Shanghai/361/2002, B/Jilin/20/2003 and B/Jiangsu/10/2003 were used at the time) [ [ WHO website recommendation for the 2005 season] ] [ [ WHO &mdash; Weekly epidemiological record &mdash; 8 October 2004, No. 41, 2004, 79, 369&ndash;376] (PDF)]

2005–2006 season (Northern Hemisphere)

The vaccines produced for the 2005&ndash;2006 season use:
* an A/New Caledonia/20/1999-like(H1N1);
* an A/California/7/2004-like(H3N2) (or the antigenically equivalent strain A/New York/55/2004);
* a B/Jiangsu/10/2003-like viruses.

In people in the U.S., overall flu and pneumonia deaths were below those of a typical flu season with 84% Influenzavirus A and the rest Influenzavirus B. Of the patients who had Type A viruses, 80% had viruses identical or similar to the A bugs in the vaccine. 70% of the people testing positive for a B virus had Type B Victoria, a version not found in the vaccine. [ [;_ylt=ArqgzESNaMQox6OHu5YxxlKs0NUE;_ylu=X3oDMTA3czJjNGZoBHNlYwM3NTE- Yahoo News] Associated Press article "CDC: Milder Than Normal Flu Season Ending" published April 27, 2006]

"During the 2005–06 season, influenza A (H3N2) viruses predominated overall, but late in the season influenza B viruses were more frequently isolated than influenza A viruses. Influenza A (H1N1) viruses circulated at low levels throughout the season. Nationally, activity was low from October through early January, increased during February, and peaked in early March. Peak activity was less intense, but activity remained elevated for a longer period of time this season compared to the previous three seasons. The longer period of elevated activity may be due in part to regional differences in the timing of peak activity and intensity of influenza B activity later in the season." [ [ CDC - 2005-06 U.S. INFLUENZA SEASON SUMMARY] ]

2006 season (Southern Hemisphere)

The composition of influenza virus vaccines for use in the 2006 Southern Hemisphere influenza season recommended by the World Health Organization was:
* an A/New Caledonia/20/99(H1N1)-like virus;
* an A/California/7/2004(H3N2)-like virus (A/New York/55/2004 was used at the time);
* a B/Malaysia/2506/2004-like virus [ [ WHO website recommendation for the 2006 season] ] [ [ WHO &mdash; Weekly epidemiological record &mdash; 7 October 2005, No. 40, 2005, 80, 341&ndash;352] (PDF)]

2006–2007 season (Northern Hemisphere)

The 2006&ndash;2007 influenza vaccine composition recommended by the World Health Organization on February 15, 2006 and the U.S. FDA's Vaccines and Related Biological Products Advisory Committee (VRBPAC) on February 17, 2006 use:
* an A/New Caledonia/20/99 (H1N1)-like virus;
* an A/Wisconsin/67/2005 (H3N2)-like virus (A/Wisconsin/67/2005 and A/Hiroshima/52/2005 strains);
* a B/Malaysia/2506/2004-like virus from B/Malaysia/2506/2004 and B/Ohio/1/2005 strains which are of B/Victoria/2/87 lineage. [ [ CDC] [ fluwatch] B/Victoria/2/87 lineage]

2007 season (Southern Hemisphere)

The composition of influenza virus vaccines for use in the 2007 Southern Hemisphere influenza season recommended by the World Health Organization on September 20, 2006 [ [ 20 September 2006: WHO information meeting (Morning)] ] was:
* an A/New Caledonia/20/99(H1N1)-like virus,
* an A/Wisconsin/67/2005(H3N2)-like virus (A/Wisconsin/67/2005 and A/Hiroshima/52/2005 were used at the time),
* a B/Malaysia/2506/2004-like virus [ [ WHO website recommendation for 2007 season] ] [ [ WHO &mdash; Recommended composition of influenza virus vaccines for use in the 2007 influenza season &mdash; September 2006] (PDF)]

2007–2008 season (Northern Hemisphere)

The composition of influenza virus vaccines for use in the 2007&ndash;2008 Northern Hemisphere influenza season recommended by the World Health Organization on February 14, 2007 [ [ 14 February 2007: WHO information meeting (Morning)] ] was:
* an A/Solomon Islands/3/2006 (H1N1)-like virus;
* an A/Wisconsin/67/2005 (H3N2)-like virus (A/Wisconsin/67/2005 (H3N2) and A/Hiroshima/52/2005 were used at the time);
* a B/Malaysia/2506/2004-like virus [ [ WHO website recommendation for 2007–2008 season] .] [ [ WHO &mdash; Recommended composition of influenza virus vaccines for use in the 2007-2008 influenza season] (PDF)]

In the US, the CDC reported in Feb 2008 that the H1N1 component was a good match (96%) to the infections occurring. But 87% of the H3N2 are A/Brisbane/10/2007-like viruses, which are a recent antigenic variant of the vaccine strain, A/Wisconsin. And 93% of the B viruses are in a B/Yamagata lineage that is relatively distinct from the vaccine strain B/Victoria lineage. Only one of the three components was a good match; A/Wisconsin is moderately protective against the drifted A/Brisbane strain. 4.5% of those viruses tested are resistant to Oseltamivir, or Tamiflu—a significant increase over previous years. [ CDC News Conference on Influenza on February 8, 2008] .]

This vaccine has been described as 40% effective compared to other years that have been 85–95% effective. [ [ Flu Outbreak Widespread] .]

2008 season (Southern Hemisphere)

The composition of virus vaccines for use in the 2008 Southern Hemisphere influenza season recommended by the World Health Organization on September 17-19, 2007 was:
* an A/Solomon Islands/3/2006 (H1N1)-like virus;
* an A/Brisbane/10/2007 (H3N2)-like virus;
* a B/Florida/4/2006-like virus [ [ WHO website recommendation for 2008 season] ] [ [ WHO &mdash; Recommended composition of influenza virus vaccines for use in the 2008 influenza season] (PDF)]

Flu vaccine for nonhumans

"Vaccination in the veterinary world pursues four goals: (i) protection from clinical disease, (ii) protection from infection with virulent virus, (iii) protection from virus excretion, and (iv) serological differentiation of infected from vaccinated animals (so-called DIVA principle). In the field of influenza vaccination, neither commercially available nor experimentally tested vaccines have been shown so far to fulfil all of these requirements." [ [ Influenza Report (online book)] chapter "Avian Influenza" by Timm C. Harder and Ortrud Werner]


Horses with horse flu can run a fever, have a dry hacking cough, have a runny nose, and become depressed and reluctant to eat or drink for several days but usually recover in two to three weeks. "Vaccination schedules generally require a primary course of 2 doses, 3–6 weeks apart, followed by boosters at 6–12 month intervals. It is generally recognised that in many cases such schedules may not maintain protective levels of antibody and more frequent administration is advised in high-risk situations." [ [ equiflunet_vaccines] ]

It is a common requirement at shows in Britain that horses are vaccinated against equine flu and a vaccination card must be produced; the FEI requires vaccination every six months. [ [ UAE Equestrian & Racing Federation] ] [ [ FEI guidelines] ]


Poultry vaccines for bird flu are made on the cheap and are not filtered and purified like human vaccines to remove bits of bacteria or other viruses. They usually contain whole virus, not just hemagglutin as in most human flu vaccines. Purification to standards needed for humans is far more expensive than the original creation of the unpurified vaccine from eggs. There is no market for veterinary vaccines that are that expensive. Another difference between human and poultry vaccines is that poultry vaccines are adjuvated with mineral oil, which induces a strong immune reaction but can cause inflammation and abscesses. "Chicken vaccinators who have accidentally jabbed themselves have developed painful swollen fingers or even lost thumbs, doctors said. Effectiveness may also be limited. Chicken vaccines are often only vaguely similar to circulating flu strains — some contain an H5N2 strain isolated in Mexico years ago. 'With a chicken, if you use a vaccine that's only 85 percent related, you'll get protection,' Dr. Cardona said. 'In humans, you can get a single point mutation, and a vaccine that's 99.99 percent related won't protect you.' And they are weaker [than human vaccines] . 'Chickens are smaller and you only need to protect them for six weeks, because that's how long they live till you eat them,' said Dr. John J. Treanor, a vaccine expert at the University of Rochester. Human seasonal flu vaccines contain about 45 micrograms of antigen, while an experimental A(H5N1) vaccine contains 180. Chicken vaccines may contain less than 1 microgram. 'You have to be careful about extrapolating data from poultry to humans,' warned Dr. David E. Swayne, director of the agriculture department's Southeast Poultry Research Laboratory. 'Birds are more closely related to dinosaurs.'" [ [ New York Times] article "Turning to Chickens in Fight With Bird Flu" published May 2, 2006]

Researchers, led by Nicholas Savill of the University of Edinburgh in Scotland, used mathematical models to simulate the spread of H5N1 and concluded that "at least 95 per cent of birds need to be protected to prevent the virus spreading silently. In practice, it is difficult to protect more than 90 per cent of a flock; protection levels achieved by a vaccine are usually much lower than this." [ [ SciDev.Net] article "Bird flu warning over partial protection of flocks" published August 16,2006]


Swine influenza virus (SIV) vaccines are extensively used in the swine industry in Europe and North America. Most swine flu vaccine manufacturers include an H1N1 and an H3N2 SIV strains.

Swine influenza has become a greater problem in recent decades. Evolution of the virus has resulted in inconsistent responses to traditional vaccines. Standard commercial swine flu vaccines are effective in controlling the problem when the virus strains match enough to have significant cross-protection and custom (autogenous) vaccines made from the specific viruses isolated are created and used in the more difficult cases. [ [ National Hog Farmer] article "Swine Flu Virus Turns Endemic" published September 15, 2007 ] SIV vaccine manufacture Novartis paints this picture: "A strain of swine influenza virus (SIV) called H3N2, first identified in the US in 1998, has brought exasperating production losses to swine producers. Abortion storms are a common sign. Sows go off feed for two or three days and run a fever up to 106°F. Mortality in a naïve herd can run as high as 15%." [ [] Custom Vaccines: Swine]


In 2004, Influenzavirus A subtype H3N8 was discovered to cause canine influenza. Because of the lack of previous exposure to this virus, dogs have no natural immunity to this virus. There is no vaccine available at this time, but there has been investigation of a canarypox-vectored vaccine for equine influenza virus for use in dogs. [cite journal |author=Karaca K, Dubovi E, Siger L, Robles A, Audonnet J, Jiansheng Y, Nordgren R, Minke J |title=Evaluation of the ability of canarypox-vectored equine influenza virus vaccines to induce humoral immune responses against canine influenza viruses in dogs |journal=Am. J. Vet. Res. |volume=68 |issue=2 |pages=208–12 |year=2007 |pmid=17269888 |doi=10.2460/ajvr.68.2.208]

ee also

*Vaccine controversy
*Thimerosal (a controversial mercury-containing organic compound used as an antiseptic and antifungal agent in vaccines)


Further reading

* [ Read Congressional Research Service (CRS) Reports regarding Influenza and vaccines]

Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Influenza vaccine — The influenza (flu) vaccine is recommended for persons at high risk for serious complications from influenza virus infection, including: {{}}Everyone age 50 or more; Residents of nursing homes and other long term care facilities that house… …   Medical dictionary

  • influenza vaccine — noun : a vaccine against influenza; specifically : a mixture of strains of formaldehyde inactivated influenza virus from chick embryo culture …   Useful english dictionary

  • Influenza research — involves investigating molecular virology, pathogenesis, host immune responses, genomics, and epidemiology regarding influenza. The main goal of research is to develop influenza countermeasures such as vaccines, therapies and diagnostic tools.The …   Wikipedia

  • Influenza A virus subtype H5N1 — Influenza A virus subtype H5N1, also known as A(H5N1) or simply H5N1, is a subtype of the Influenza A virus which can cause illness in humans and many other animal species.cite web author=International Committee on Taxonomy of Viruses | publisher …   Wikipedia

  • influenza virus vaccine — n INFLUENZA VACCINE * * * 1. [USP] TIV; an inactivated trivalent virus vaccine, containing two influenza A virus strains and one influenza B virus strain, usually prepared from virus subunits; administered intramuscularly. The composition of the… …   Medical dictionary

  • Vaccine injury — Classification and external resources ICD 10 T88.1, Y58 Y59 …   Wikipedia

  • equine influenza vaccine — a bivalent killed virus vaccine of chick embryo origin, used for immunization of horses against equine influenza due to influenza virus A equine strains 1 and 2 …   Medical dictionary

  • live attenuated influenza vaccine — (LAIV) influenza virus v. (def. 2) …   Medical dictionary

  • trivalent inactivated influenza vaccine — (TIV) influenza virus v. (def. 1) …   Medical dictionary

  • Influenza pandemic — Note: For information about the content, tone and sourcing of this article, please see the tags at the bottom of this page. An influenza pandemic is an epidemic of an influenza virus that spreads on a worldwide scale and infects a large… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”