Poynting's theorem

Poynting's theorem

Poynting's theorem is a statement due to John Henry Poyntingcite journal
author=Poynting, J. H.
authorlink=John_Henry_Poynting
year=1884
journal=Phil. Trans.
volume=175
pages=277
title=On the Transfer of Energy in the Electromagnetic Field
url=http://www.archive.org/details/collectedscienti00poynuoft
] about the conservation of energy for the electromagnetic field. It relates the time derivative of the energy density, "u" to the energy flow and the rate at which the fields do work. It is summarised by the following formula:

:frac{partial u}{partial t} + ablacdotmathbf{S} = -mathbf{J}cdotmathbf{E}

where S is the Poynting vector representing the flow of energy, J is the current density and E is the electric field. Energy density "u" is (symbol ε0 is the electric constant and μ0 is the magnetic constant):

:u = frac{1}{2}left(epsilon_0 mathbf{E}^2 + frac{mathbf{B}^2}{mu_0} ight).

Since the magnetic field does no work, the right hand side gives the negative of the total work done by the electromagnetic field per second·meter3.

Poynting's theorem in integral form::frac{partial}{partial t} int_V u dV + oint_{partial V}mathbf{S} dmathbf{A} = -int_Vmathbf{J}cdotmathbf{E} dV

Where partial V ! is the surface which bounds (encloses) volume V !.

In electrical engineering context the theorem is usually written with the energy density term "u" expanded in the following way, which resembles the continuity equation:

ablacdotmathbf{S} + epsilon_0 mathbf{E}cdotfrac{partial mathbf{E{partial t} + frac{mathbf{B{mu_0}cdotfrac{partialmathbf{B{partial t} +mathbf{J}cdotmathbf{E} = 0

Where mathbf{S} is the energy flow of the electromagnetic wave, epsilon_0 mathbf{E}cdotfrac{partial mathbf{E{partial t} is the power consumed for the build-up of electric field, frac{mathbf{B{mu_0}cdotfrac{partialmathbf{B{partial t} is the power consumed for the build-up of magnetic field and mathbf{J}cdotmathbf{E} is the power consumed by the Lorentz force acting on charge carriers.

Derivation

The theorem can be derived from two of Maxwell's Equations. First consider Faraday's Law:: abla imes mathbf{E} = - frac{partial mathbf{B{partial t}Taking the dot product of this equation with mathbf{B} yields::mathbf{B} cdot ( abla imes mathbf{E}) = - mathbf{B} cdot frac{partial mathbf{B{partial t}Next consider the equation:: abla imes mathbf{B} = mu_0 mathbf{J} + epsilon_0 mu_0 frac{partial mathbf{E{partial t}Taking the dot product of this equation with mathbf{E} yields::mathbf{E} cdot ( abla imes mathbf{B}) = mathbf{E} cdot mu_0 mathbf{J} + mathbf{E} cdot epsilon_0 mu_0 frac{partial mathbf{E{partial t}Subtracting the first dot product from the second yields::mathbf{E} cdot ( abla imes mathbf{B}) - mathbf{B} cdot ( abla imes mathbf{E}) = mu_0 mathbf{E} cdot mathbf{J} + epsilon_0 mu_0 mathbf{E} cdot frac{partial mathbf{E{partial t} + mathbf{B} cdot frac{partial mathbf{B{partial t}Finally, by the product rule, as applied to the divergence operator over the cross product (described here)::- ablacdot ( mathbf{E} imes mathbf{B} ) = mu_0 mathbf{E} cdot mathbf{J} + epsilon_0 mu_0 mathbf{E} cdot frac{partial mathbf{E{partial t} + mathbf{B} cdot frac{partial mathbf{B{partial t}Since the Poynting vector mathbf{S} is defined as:: mathbf{S} = frac{1}{mu_0} mathbf{E} imes mathbf{B} This is equivalent to:: ablacdotmathbf{S} + epsilon_0 mathbf{E}cdotfrac{partial mathbf{E{partial t} + frac{mathbf{B{mu_0}cdotfrac{partialmathbf{B{partial t} +mathbf{J}cdotmathbf{E} = 0

Generalization

The "mechanical" energy counterpart of the above theorem for the "electromagnetical" energy continuity equation is:frac{partial}{partial t} u_m(mathbf{r},t) + ablacdot mathbf{S}_m (mathbf{r},t) =mathbf{J}(mathbf{r},t)cdotmathbf{E}(mathbf{r},t),where "u_m" is the mechanical (kinetic) energy density in the system. It can be described as the sum of kinetic energies of particles "α" (e.g., electrons in a wire), whose trajectory is given by mathbf{r}_{alpha}(t)::u_m(mathbf{r},t) = sum_{alpha} frac{m_{alpha{2} dot{r}^2_{alpha}delta(mathbf{r}-mathbf{r}_{alpha}(t)),mathbf{S_m} is the flux of their energies, or a "mechanical Poynting vector"::mathbf{S}_m (mathbf{r},t) = sum_{alpha} frac{m_{alpha{2} dot{r}^2_{alpha}dot{mathbf{r_{alpha}delta(mathbf{r}-mathbf{r}_{alpha}(t)).Both can be combined via the Lorentz force, which the electromagnetical fields exert on the moving charged particles (see above), to the following energy continuity equation or energy conservation law cite journal
author=Richter, F.
coauthors=Florian, M.; Henneberger, K.
year=2008
title=Poynting's theorem and energy conservation in the propagation of light in bounded media
journal=Europhys. Lett.
volume=81
pages=67005
doi=10.1209/0295-5075/81/67005
url=http://arxiv.org/pdf/0710.0515v3
format=reprint
] ::frac{partial}{partial t}left(u_e + u_m ight) + ablacdot left( mathbf{S}_e +mathbf{S}_m ight) = 0,covering both types of energy and the conversion of one into the other.

ee also

*Poynting vector

References

External links

* [http://scienceworld.wolfram.com/physics/PoyntingTheorem.html Eric W. Weisstein "Poynting Theorem" From ScienceWorld--A Wolfram Web Resource.]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • poynting's theorem — ˈpȯintiŋz noun Usage: usually capitalized P Etymology: after John H. Poynting died 1914 English physicist, its originator : a statement in electromagnetic theory: the transfer of energy by an electromagnetic wave is at right angles to both… …   Useful english dictionary

  • Poynting vector — In physics, the Poynting vector can be thought of as representing the energy flux (in W/m2) of an electromagnetic field. It is named after its inventor John Henry Poynting. Oliver Heaviside independently co discovered the Poynting vector. In… …   Wikipedia

  • Poynting, John Henry — ▪ British physicist born Sept. 9, 1852, Monton, Lancashire, Eng. died March 30, 1914, Birmingham, Warwickshire       British physicist who introduced a theorem that assigns a value to the rate of flow of electromagnetic energy known as the… …   Universalium

  • Poynting-Theorem — Der Satz von Poynting stellt einen Erhaltungssatz in der Elektrodynamik dar. Damit wird der Energieerhaltungssatz auf elektromagnetische Felder verallgemeinert. Seine Formulierung wird dem britischen Physiker John Henry Poynting zugeschrieben.… …   Deutsch Wikipedia

  • Poynting vector — noun The vector obtained in the direction of a right hand screw from the cross product (vector product) of the electric field vector rotated into the magnetic field vector of an electromagnetic wave. Note: The Poynting vector, with transmission… …   Wiktionary

  • John Henry Poynting — Infobox Scientist name = John Poynting box width = 300px image width = 240px caption = John Henry Poynting (1852 1914) birth date = birth date|1852|09|09 birth place = Monton, Lancashire, England death date = death date and… …   Wikipedia

  • Clairaut's theorem — For the interpretation of this theorem in terms of symmetry of second derivatives of a mapping , see Symmetry of second derivatives. Figure 1: An ellipsoid …   Wikipedia

  • Reciprocity (electromagnetism) — This page is about reciprocity theorems in classical electromagnetism. See also Reciprocity (mathematics) for unrelated reciprocity theorems, and Reciprocity for more general usages of the term. In classical electromagnetism, reciprocity refers… …   Wikipedia

  • Теорема Пойнтинга — (англ. Poynting s theorem)  теорема, описывающая закон сохранения энергии электромагнитного поля. Теорема была доказана в 1884 Джоном Генри Пойнтингом. Всё сводится к следующей формуле: , Где S  вектор Пойнтинга, J  плотность… …   Википедия

  • Scientific phenomena named after people — This is a list of scientific phenomena and concepts named after people (eponymous phenomena). For other lists of eponyms, see eponym. NOTOC A* Abderhalden ninhydrin reaction Emil Abderhalden * Abney effect, Abney s law of additivity William de… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”