- Poynting's theorem
Poynting's theorem is a statement due to
John Henry Poynting cite journal
author=Poynting, J. H.
authorlink=John_Henry_Poynting
year=1884
journal=Phil. Trans.
volume=175
pages=277
title=On the Transfer of Energy in the Electromagnetic Field
url=http://www.archive.org/details/collectedscienti00poynuoft] about theconservation of energy for theelectromagnetic field . It relates the time derivative of the energy density, "u" to the energy flow and the rate at which the fields do work. It is summarised by the following formula::frac{partial u}{partial t} + ablacdotmathbf{S} = -mathbf{J}cdotmathbf{E}
where S is the
Poynting vector representing the flow of energy, J is thecurrent density and E is theelectric field . Energy density "u" is (symbol ε0 is theelectric constant and μ0 is themagnetic constant )::u = frac{1}{2}left(epsilon_0 mathbf{E}^2 + frac{mathbf{B}^2}{mu_0} ight).
Since the
magnetic field does no work, the right hand side gives the negative of the total work done by the electromagnetic field per second·meter3.Poynting's theorem in integral form::frac{partial}{partial t} int_V u dV + oint_{partial V}mathbf{S} dmathbf{A} = -int_Vmathbf{J}cdotmathbf{E} dV
Where partial V ! is the surface which bounds (encloses) volume V !.
In electrical engineering context the theorem is usually written with the energy density term "u" expanded in the following way, which resembles the
continuity equation :ablacdotmathbf{S} + epsilon_0 mathbf{E}cdotfrac{partial mathbf{E{partial t} + frac{mathbf{B{mu_0}cdotfrac{partialmathbf{B{partial t} +mathbf{J}cdotmathbf{E} = 0
Where mathbf{S} is the energy flow of the electromagnetic wave, epsilon_0 mathbf{E}cdotfrac{partial mathbf{E{partial t} is the power consumed for the build-up of electric field, frac{mathbf{B{mu_0}cdotfrac{partialmathbf{B{partial t} is the power consumed for the build-up of magnetic field and mathbf{J}cdotmathbf{E} is the power consumed by the
Lorentz force acting on charge carriers.Derivation
The theorem can be derived from two of
Maxwell's Equations . First consider Faraday's Law::abla imes mathbf{E} = - frac{partial mathbf{B{partial t}Taking thedot product of this equation with mathbf{B} yields::mathbf{B} cdot ( abla imes mathbf{E}) = - mathbf{B} cdot frac{partial mathbf{B{partial t}Next consider the equation::abla imes mathbf{B} = mu_0 mathbf{J} + epsilon_0 mu_0 frac{partial mathbf{E{partial t}Taking the dot product of this equation with mathbf{E} yields::mathbf{E} cdot ( abla imes mathbf{B}) = mathbf{E} cdot mu_0 mathbf{J} + mathbf{E} cdot epsilon_0 mu_0 frac{partial mathbf{E{partial t}Subtracting the first dot product from the second yields::mathbf{E} cdot ( abla imes mathbf{B}) - mathbf{B} cdot ( abla imes mathbf{E}) = mu_0 mathbf{E} cdot mathbf{J} + epsilon_0 mu_0 mathbf{E} cdot frac{partial mathbf{E{partial t} + mathbf{B} cdot frac{partial mathbf{B{partial t}Finally, by theproduct rule , as applied to thedivergence operator over thecross product (described here)::ablacdot ( mathbf{E} imes mathbf{B} ) = mu_0 mathbf{E} cdot mathbf{J} + epsilon_0 mu_0 mathbf{E} cdot frac{partial mathbf{E{partial t} + mathbf{B} cdot frac{partial mathbf{B{partial t}Since thePoynting vector mathbf{S} is defined as::mathbf{S} = frac{1}{mu_0} mathbf{E} imes mathbf{B} This is equivalent to::ablacdotmathbf{S} + epsilon_0 mathbf{E}cdotfrac{partial mathbf{E{partial t} + frac{mathbf{B{mu_0}cdotfrac{partialmathbf{B{partial t} +mathbf{J}cdotmathbf{E} = 0Generalization
The "mechanical" energy counterpart of the above theorem for the "electromagnetical" energy continuity equation is:frac{partial}{partial t} u_m(mathbf{r},t) + ablacdot mathbf{S}_m (mathbf{r},t) =mathbf{J}(mathbf{r},t)cdotmathbf{E}(mathbf{r},t),where "u_m" is the mechanical (kinetic) energy density in the system. It can be described as the sum of kinetic energies of particles "α" (e.g., electrons in a wire), whose
trajectory is given by mathbf{r}_{alpha}(t)::u_m(mathbf{r},t) = sum_{alpha} frac{m_{alpha{2} dot{r}^2_{alpha}delta(mathbf{r}-mathbf{r}_{alpha}(t)),mathbf{S_m} is the flux of their energies, or a "mechanical Poynting vector"::mathbf{S}_m (mathbf{r},t) = sum_{alpha} frac{m_{alpha{2} dot{r}^2_{alpha}dot{mathbf{r_{alpha}delta(mathbf{r}-mathbf{r}_{alpha}(t)).Both can be combined via theLorentz force , which the electromagnetical fields exert on the moving charged particles (see above), to the following energycontinuity equation or energyconservation law cite journal
author=Richter, F.
coauthors=Florian, M.; Henneberger, K.
year=2008
title=Poynting's theorem and energy conservation in the propagation of light in bounded media
journal=Europhys. Lett.
volume=81
pages=67005
doi=10.1209/0295-5075/81/67005
url=http://arxiv.org/pdf/0710.0515v3
format=reprint] ::frac{partial}{partial t}left(u_e + u_m ight) + ablacdot left( mathbf{S}_e +mathbf{S}_m ight) = 0,covering both types of energy and the conversion of one into the other.ee also
*
Poynting vector References
External links
* [http://scienceworld.wolfram.com/physics/PoyntingTheorem.html Eric W. Weisstein "Poynting Theorem" From ScienceWorld--A Wolfram Web Resource.]
Wikimedia Foundation. 2010.