Gilbreath's conjecture

Gilbreath's conjecture

Gilbreath's conjecture is a conjecture in number theory about the effect of difference operators on the sequence of prime numbers. It is named after Norman L. Gilbreath who came up with it in 1958. Long before that François Proth had actually discovered and published this effect in 1878. Proth claimed to have proved it but the proof was not correct. [Chris Caldwell, [http://primes.utm.edu/glossary/page.php?sort=GilbreathsConjecture The Prime Glossary: Gilbreath's conjecture] at The Prime Pages.]

Problem definition

Write down all the prime numbers, thus:

:2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ...

and then write down the absolute difference of subsequent values (3-2=1; 5-3=2; 7-5=2; 11-7=4; etc.) in the above sequence, and then do the same with the resulting sequence. What you get looks like:

:2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ...
:1, 2, 2, 4, 2, 4, 2, 4, 6, 2, ...
:1, 0, 2, 2, 2, 2, 2, 2, 4, ...
:1, 2, 0, 0, 0, 0, 0, 2, ...
:1, 2, 0, 0, 0, 0, 2, ...
:1, 2, 0, 0, 0, 2, ...
:1, 2, 0, 0, 2, ...

Equivalently, let a_n be a value of the original sequence, and b_n be a value of the new sequence; then

:b_n = |a_n - a_{n+1}|.

Gilbreath's conjecture states that the first value of this sequence always equals 1, except in the original sequence of primes. It has been verified for primes up to 10^{13}. [A. M. Odlyzko, " [http://www.dtc.umn.edu/~odlyzko/doc/arch/gilbreath.conj.ps Iterated absolute values of differences of consecutive primes] ", Mathematics of Computation, 61 (1993) pp. 373–380. ]

Notes


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Conjecture De Gilbreath — La conjecture de Norman Gilbreath est une conjecture dans le domaine de la théorie des nombres, attribuée à Norman L. Gilbreath, en 1958. Définition du problème Il s agit d écrire tous les nombres premiers, soit: 2, 3, 5, 7, 11, 13, 17, 19, 23,… …   Wikipédia en Français

  • Conjecture de gilbreath — La conjecture de Norman Gilbreath est une conjecture dans le domaine de la théorie des nombres, attribuée à Norman L. Gilbreath, en 1958. Définition du problème Il s agit d écrire tous les nombres premiers, soit: 2, 3, 5, 7, 11, 13, 17, 19, 23,… …   Wikipédia en Français

  • Conjecture de Gilbreath — En théorie des nombres, la conjecture de Gilbreath est une conjecture non résolue attribuée à Norman L. Gilbreath en 1958, bien que déjà proposée en 1878 par François Proth (en)[1]. Définition du problème On écrit sur une première ligne la… …   Wikipédia en Français

  • List of unsolved problems in mathematics — This article lists some unsolved problems in mathematics. See individual articles for details and sources. Contents 1 Millennium Prize Problems 2 Other still unsolved problems 2.1 Additive number theory …   Wikipedia

  • Unsolved problems in mathematics — This article lists some unsolved problems in mathematics. See individual articles for details and sources. Millennium Prize Problems Of the seven Millennium Prize Problems set by the Clay Mathematics Institute, the six ones yet to be solved are:… …   Wikipedia

  • List of number theory topics — This is a list of number theory topics, by Wikipedia page. See also List of recreational number theory topics Topics in cryptography Contents 1 Factors 2 Fractions 3 Modular arithmetic …   Wikipedia

  • List of mathematics articles (G) — NOTOC G G₂ G delta space G networks Gδ set G structure G test G127 G2 manifold G2 structure Gabor atom Gabor filter Gabor transform Gabor Wigner transform Gabow s algorithm Gabriel graph Gabriel s Horn Gain graph Gain group Galerkin method… …   Wikipedia

  • Гипотеза Гильбрайта — Гипотеза Гильбрайта  гипотеза в теории чисел, утверждющая, что если взять последовательность простых чисел, применить к ней разностный оператор со взятием абсолютных значений и повторять этот процесс к получающимся последовательностям, то… …   Википедия

  • Finite difference — A finite difference is a mathematical expression of the form f(x + b) − f(x + a). If a finite difference is divided by b − a, one gets a difference quotient. The approximation of derivatives by finite differences… …   Wikipedia

  • Difference operator — In mathematics, a difference operator maps a function, f ( x ), to another function, f ( x + a ) − f ( x + b ).The forward difference operator :Delta f(x)=f(x+1) f(x),occurs frequently in the calculus of finite differences, where it plays a role… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”