Gauss-Lucas theorem

Gauss-Lucas theorem

In complex analysis, the Gauss-Lucas theorem gives a geometrical relation between the roots of a polynomial "P" and the roots of its derivative "P"'. The set of roots of a real or complex polynomial is a set of points in the complex plane. The theorem states that the roots of "P"' all lie within the convex hull of the roots of "P", that is the smallest convex polygon containing the roots of "P". When "P" has a single root then this convex hull is a single point and when the roots lie on a line then the convex hull is a segment of this line. The Gauss-Lucas Theorem, named after Karl Friedrich Gauss and Édouard Lucas is similar in spirit to Rolle's Theorem.

Formal statement

If "P" is a (nonconstant) polynomial with complex coefficients, all zeros of "P" ' belong to the convex hull of the set of zeros of "P".

pecial cases

It is easy to see that if "P"(x) = "ax"2 + "bx" + "c " is a second degree polynomial,the zero of "P" '("x") = 2"ax" + "b" is the average of the roots of "P". In that case, the convex hull is the line segment with the two roots as endpoints and it is clear that the average of the roots is the middle point of the segment.

In addition, if a polynomial of degree "n" of real coefficients has "n" distinct real zeros x_1, we see, using Rolle's theorem, that the zeros of the derivative polynomial are in the interval [x_1,x_n] , which is the convex hull of the set of roots.

Proof

Over the complex numbers, "P" is a product of prime factors

:P(z)= alpha prod_{i=1}^n (z-a_i)

where the complex numbers a_1, a_2, ldots, a_n are the – not necessary distinct – zeros of the polynomial P, the complex number alpha is the leading coefficient of P and n is the degree of P. Let z be any complex number for which P(z) eq 0. Then we have for the Logarithmic derivative

: frac{P^prime(z)}{P(z)}= sum_{i=1}^n frac{1}{z-a_i}.

In particular, if z is a zero of P' and still P(z) eq 0, then

: sum_{i=1}^n frac{1}{z-a_i}=0.

or

: sum_{i=1}^n frac{overline{z}-overline{a_i} } {vert z-a_ivert^2}=0.

This may also be written as : left(sum_{i=1}^n frac{1}{vert z-a_ivert^2} ight)overline{z}=sum_{i=1}^n frac{1}{vert z-a_ivert^2}overline{a_i}.

Taking their conjugates, we see that "z" is a weighted sum with positive coefficients that sum to one, or the barycenter, of the complex numbers "a"i (with different mass assigned on each root).

If "P"("z") = "P"'("z") = 0, then "z" = 1·"z" + 0·"a""i", and is still a convex combination of the roots of "P".

External links

* [http://demonstrations.wolfram.com/LucasGaussTheorem/ Lucas-Gauss Theorem] by Bruce Torrence, The Wolfram Demonstrations Project.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Teorema de Gauss-Lucas — En análisis complejo, el teorema de Gauss Lucas aporta una relación geométrica entre las raíces de un polinomio P y las raíces de su derivada P . El conjunto de raíces de un polinomio real o complejo es un conjunto de puntos en el plano complejo …   Wikipedia Español

  • List of topics named after Carl Friedrich Gauss — Carl Friedrich Gauss (1777 ndash; 1855) is the eponym of all of the topics listed below. Topics including Gauss *Carl Friedrich Gauss Prize, a mathematics award *Degaussing, to demagnetize an object *Gauss (unit), a unit of magnetic field (B)… …   Wikipedia

  • Marden's theorem — A triangle and its Steiner inellipse. The zeroes of p(z) are the black dots, and the zeroes of p (z) are the red dots). The center green dot is the zero of p (z). Marden s theorem states that the red dots are the foci of the ellipse. In… …   Wikipedia

  • Édouard Lucas — François Édouard Anatole Lucas (April 4, 1842 in Amiens October 3, 1891) was a French mathematician. Lucas is known for his study of the Fibonacci sequence. The related Lucas sequence is named after him. He gave a formula for finding the nth term …   Wikipedia

  • Opérateur de Gauss-Kuzmin-Wirsing — En mathématiques, l opérateur de Gauss Kuzmin Wirsing apparaît dans l étude des fractions continues. Il est aussi relié à la fonction zêta de Riemann. Sommaire 1 Introduction 2 Relation avec la fonction zêta de Riemann 3 Eléments matriciels …   Wikipédia en Français

  • Théorème de d'Alembert-Gauss — Pour les articles homonymes, voir Théorème de Gauss. Jean le Rond D Alembert est le premier à ressentir la nécessité de démontrer le théorème fondamental de l algèbre. Sa motivation est entièrement analytique, il r …   Wikipédia en Français

  • Formule de Gauss-Bonnet — En géométrie différentielle, la formule de Gauss Bonnet est une propriété reliant la géométrie (au sens de la courbure de Gauss) et la topologie (au sens de la caractéristique d Euler) des surfaces. Elle porte le nom des mathématiciens Carl… …   Wikipédia en Français

  • Teorema de Lucas — Para el teorema de análisis complejo, véase Teorema de Gauss Lucas. En teoría de números, el teorema de Lucas dice lo siguiente: Sean m y n números enteros no negativos, p un número primo y sean y …   Wikipedia Español

  • List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… …   Wikipedia

  • List of mathematics articles (G) — NOTOC G G₂ G delta space G networks Gδ set G structure G test G127 G2 manifold G2 structure Gabor atom Gabor filter Gabor transform Gabor Wigner transform Gabow s algorithm Gabriel graph Gabriel s Horn Gain graph Gain group Galerkin method… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”