Dini test

Dini test

In mathematics, the Dini and Dini-Lipschitz tests are highly precise tests that can be used to prove that the Fourier series of a function converges at a given point. These tests are named after Ulisse Dini and Rudolf Lipschitz.[1]

Contents

Definition

Let f be a function on [0,2π], let t be some point and let δ be a positive number. We define the local modulus of continuity at the point t by

\left.\right.\omega_f(\delta;t)=\max_{|\varepsilon| \le \delta} |f(t)-f(t+\varepsilon)|

Notice that we consider here f to be a periodic function, e.g. if t = 0 and ε is negative then we define f(ε) = f(2π + ε).

The global modulus of continuity (or simply the modulus of continuity) is defined by

\left.\right.\omega_f(\delta) = \max_t \omega_f(\delta;t)

With these definitions we may state the main results

Theorem (Dini's test): Assume a function f satisfies at a point t that

\int_0^\pi \frac{1}{\delta}\omega_f(\delta;t)\,d\delta < \infty.

Then the Fourier series of f converges at t to f(t).

For example, the theorem holds with ωf = log  − 2− 1) but does not hold with log  − 1− 1).

Theorem (the Dini-Lipschitz test): Assume a function f satisfies

\omega_f(\delta)=o\left(\log\frac{1}{\delta}\right)^{-1}.

Then the Fourier series of f converges uniformly to f.

In particular, any function of a Hölder class[clarification needed] satisfies the Dini-Lipschitz test.

Precision

Both tests are best of their kind. For the Dini-Lipschitz test, it is possible to construct a function f with its modulus of continuity satisfying the test with O instead of o, i.e.

\omega_f(\delta)=O\left(\log\frac{1}{\delta}\right)^{-1}.

and the Fourier series of f diverges. For the Dini test, the statement of precision is slightly longer: it says that for any function Ω such that

\int_0^\pi \frac{1}{\delta}\Omega(\delta)\,d\delta = \infty

there exists a function f such that

\left.\right.\omega_f(\delta;0) < \Omega(\delta)

and the Fourier series of f diverges at 0.

See also

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Dini — may refer to: Barbana Dini, Albanian singer Dini Exams, religious exams Dino Dini, English games developer Lamberto Dini, Italian politician Mohamed Dini Farah, Djiboutian politician Muguette Dini, French politician Paul Dini, animation and comic …   Wikipedia

  • Dini's surface — with 0 ≤ u ≤ 4π and 0.01 ≤ v ≤ 1 and constants a = 1.0 and b = 0.2. In geometry, Dini s surface is a surface with constant negative curvature that can be created by twisting a… …   Wikipedia

  • Dini continuity — In mathematical analysis, Dini continuity is a refinement of continuity. Contents 1 Definition 2 Properties 3 See also 4 References …   Wikipedia

  • Test (película) — [cita requerida] Test. Una historia de amor argentino. Título Test (película) Ficha técnica Dirección Javier Mollo Producción Juan Pablo Papaleo …   Wikipedia Español

  • Series (mathematics) — A series is the sum of the terms of a sequence. Finite sequences and series have defined first and last terms, whereas infinite sequences and series continue indefinitely.[1] In mathematics, given an infinite sequence of numbers { an } …   Wikipedia

  • List of mathematics articles (D) — NOTOC D D distribution D module D D Agostino s K squared test D Alembert Euler condition D Alembert operator D Alembert s formula D Alembert s paradox D Alembert s principle Dagger category Dagger compact category Dagger symmetric monoidal… …   Wikipedia

  • Convergence tests — In mathematics, convergence tests are methods of testing for the convergence, conditional convergence, absolute convergence, interval of convergence or divergence of an infinite series. Contents 1 List of tests 2 Comparison 3 Examples …   Wikipedia

  • Module de continuité — En analyse mathématique, un module de continuité est une fonction utilisée pour mesurer quantitativement la continuité uniforme des fonctions. Ainsi, une fonction admet ω pour module de continuité si et seulement si pour tout x et y dans le… …   Wikipédia en Français

  • Liste de théorèmes — par ordre alphabétique. Pour l établissement de l ordre alphabétique, il a été convenu ce qui suit : Si le nom du théorème comprend des noms de mathématiciens ou de physiciens, on se base sur le premier nom propre cité. Si le nom du théorème …   Wikipédia en Français

  • Convergence of Fourier series — In mathematics, the question of whether the Fourier series of a periodic function converges to the given function is researched by a field known as classical harmonic analysis, a branch of pure mathematics. Convergence is not necessarily a given… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”