- Substitution of variables
-
In mathematics, substitution of variables (also called variable substitution or coordinate transformation) refers to the substitution of certain variables with other variables. Though the study of how variable substitutions affect a certain problem can be interesting in itself, they are often used when solving mathematical or physical problems, as the correct substitution may greatly simplify a problem which is hard to solve in the original variables. Under certain conditions the solution to the original problem can be recovered by back-substitution (inverting the substitution).
Contents
Formal introduction
Let A, B be smooth manifolds and let be a Cr-diffeomorphism between them, that is: Φ is a r times continuously differentiable, bijective map from A to B with r times continuously differentiable inverse from B to A. Here r may be any natural number (or zero), (smooth) or ω (analytic).
The map Φ is called a regular coordinate transformation or regular variable substitution, where regular refers to the Cr-ness of Φ. Usually one will write x = Φ(y) to indicate the replacement of the variable x by the variable y by substituting the value of Φ in y for every occurrence of x.
Common examples
Cylindrical coordinates
Some systems can be more easily solved when switching to cylindrical coordinates. Consider for example the equation
This may be a potential energy function for some physical problem. If one does not immediately see a solution, one might try the substitution
- given by .
Note that if θ runs outside a 2π-length interval, for example, [0,2π], the map Φ is no longer bijective. Therefore Φ should be limited to, for example . Notice how r = 0 is excluded, for Φ is not bijective in the origin (θ can take any value, the point will be mapped to (0, 0, z)). Then, replacing all occurrences of the original variables by the new expressions prescribed by Φ and using the identity sin 2x + cos 2x = 1, we get
- .
Now the solutions can be readily found: sin(θ) = 0, so θ = 0 or θ = π. Applying the inverse of Φ shows that this is equivalent to y = 0 while . Indeed we see that for y = 0 the function vanishes, except for the origin.
Note that, had we allowed r = 0, the origin would also have been a solution, though it is not a solution to the original problem. Here the bijectivity of Φ is crucial.
Integration
Main article: Integration by substitutionUnder the proper variable substitution, calculating an integral may become considerably easier. Consult the main article for an example.
Momentum vs. velocity
Consider a system of equations
for a given function H(x,v). The mass can be eliminated by the (trivial) substitution . Clearly this is a bijective map from to . Under the substitution v = Φ(p) the system becomes
Lagrangian mechanics
Main article: Lagrangian mechanicsGiven a force field ϕ(t,x,v), Newton's equations of motion are
- .
Lagrange examined how these equations of motion change under an arbitrary substitution of variables x = Ψ(t,y), .
He found that the equations
are equivalent to Newton's equations for the function L = T − V, where T is the kinetic, and V the potential energy.
In fact, when the substitution is chosen well (exploiting for example symmetries and constraints of the system) these equations are much easier to solve than Newton's equations in Cartesian coordinates.
See also
- substitution property of equality
- instantiation of universals
Categories:
Wikimedia Foundation. 2010.