Amoeba (mathematics)

Amoeba (mathematics)

right|thumb|The amoeba of">
p(z, w)=w-2z-1.,

[


right|thumb|The_amoeba_of
p(z, w)=3z^2,+5zw+w^3+1.,
Notice the "vacuole" in the middle of the amoeba.]

right|thumb|The amoeba of ">
P(z, w)=1 + z,+ z^2 + z^3 + z^2w^3,+ 10zw + 12z^2w,+ 10z^2w^2.,

right|thumb|The amoeba of">
P(z, w)=50 z^3,+83 z^2 w+24 z w^2,+w^3+392 z^2,+414 z w+50 w^2,-28 z +59 w-100., In complex analysis, a branch of mathematics, an amoeba is a set associated with a polynomial in one or more complex variables. Amoebas have applications in algebraic geometry. There is independently a concept of "amoeba order" in set theory.

Definition

Consider the function

:mbox{Log}: left({mathbb C}ackslash{0} ight)^n o mathbb R^n

defined on the set of all "n"-tuples z=(z_1, z_2, dots, z_n) of non-zero complex numbers with values in the Euclidean space mathbb R^n, given by the formula:mbox{Log}(z_1, z_2, dots, z_n)= (log |z_1|, log|z_2|, dots, log |z_n|).,

Here, 'log' denotes the natural logarithm. If p(z) is a polynomial in n complex variables, its amoeba {mathcal A}_p is defined as the image of the set of zeros of "p" under Log, so

: {mathcal A}_p = left{mbox{Log} (z) , : , zin left({mathbb C}ackslash{0} ight)^n, p(z)=0 ight}.,

Amoebas were introduced in 1994 in a book by Gelfand, Kapranov, and Zelevinsky [cite book
last = Gelfand
first = I. M.
coauthors = M.M. Kapranov, A.V. Zelevinsky
title = Discriminants, resultants, and multidimensional determinants
publisher = Boston: Birkhäuser
date = 1994
pages =
isbn = 0817636609
] .

Properties

* Any amoeba is a closed set.
* Any connected component of the complement mathbb R^nackslash {mathcal A}_p is convex.
* The area of an amoeba of a not identically zero polynomial in two complex variables is finite.
* A two-dimensional amoeba has a number of "tentacles" which are infinitely long and exponentially narrowing towards infinity.

Ronkin function

A useful tool in studying amoebas is the Ronkin function. For p(z) a polynomial in n complex variables, one defines the Ronkin function

: N_p:mathbb R^n o mathbb R

by the formula

: N_p(x)=frac{1}{(2pi i)^n}int_{mbox{Log}^{-1}(x)}log|p(z)| ,frac{dz_1}{z_1} wedge frac{d z_2}{z_2}wedgecdots wedge frac{d z_n}{z_n},

where x denotes x=(x_1, x_2, dots, x_n). Equivalently, N_p is given by the integral

: N_p(x)=frac{1}{(2pi)^n}int_{ [0, 2pi] ^n}log|p(z)| ,d heta_1,d heta_2 cdots d heta_n,

where

: z=left(e^{x_1+i heta_1}, e^{x_2+i heta_2}, dots, e^{x_n+i heta_n} ight).

The Ronkin function is convex, and it is affine on each connected component of the complement of the amoeba of p(z).

As an example, the Ronkin function of a monomial

: p(z)=az_1^{k_1}z_2^{k_2}dots z_n^{k_n},

with a e 0 is

: N_p(x) = log|a|+k_1x_1+k_2x_2+cdots+k_nx_n.,

et theory

In set theory, the amoeba order is the set of pairs langle P,varepsilon angle where P is an open subset of the Euclidean unit square [0,1] imes [0,1] with Lebesgue measure mu(P) < varepsilon. We order the elements of the amoeba order by langle P,varepsilon anglelelangle Q,varepsilon^* angle iff Psupseteq Q hbox{ and } varepsilonlevarepsilon^*. [This definition is from Benedikt Löwe, "What is ... An Amoeba (2)?" [http://www.math.uni-bonn.de/people/loewe/Publ/amoebaR.ps] .]

References

External links

* [http://www.math.tamu.edu/~sottile/MSRI/viro.html WHAT IS an amoeba?]
* [http://www.dm.unipi.it/~bertrand/amoeb-geotrop/node1.html Amoebas of algebraic varieties]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Amoeba (disambiguation) — Amoeba is a genus of protozoa, a type of single celled organism.Amoeba can also refer to:* an Amoeboid organism * Amoeba distributed operating system * Amoeba Music, an independent music chain * Rogue Amoeba, a software company * Amoeba… …   Wikipedia

  • List of mathematics articles (A) — NOTOC A A Beautiful Mind A Beautiful Mind (book) A Beautiful Mind (film) A Brief History of Time (film) A Course of Pure Mathematics A curious identity involving binomial coefficients A derivation of the discrete Fourier transform A equivalence A …   Wikipedia

  • Optimization (mathematics) — In mathematics, the term optimization, or mathematical programming, refers to the study of problems in which one seeks to minimize or maximize a real function by systematically choosing the values of real or integer variables from within an… …   Wikipedia

  • Тропическая геометрия — Тропическая прямая на плоскости Тропическая геометрия  появившаяся в 2000 х годах область в математике, исходно возникшая в информатике, и связанная с алгебраической …   Википедия

  • University of Waterloo — seal Motto Concordia cum veritate Motto in English In harmony with truth Established 1957 …   Wikipedia

  • Lateral communication — means communication between and amongst all given entities at a particular level of an organization.For example:* a coordinated flock of birds or a shoal of fish all maintain their relative positions, or alter direction simultaneously due to… …   Wikipedia

  • Chaos — (  /ˈkeɪ …   Wikipedia

  • Амёба (алгебраическая геометрия) — У этого термина существуют и другие значения, см. Amoeba (значения). Амёба линейного многочлена …   Википедия

  • Python (programming language) — infobox programming language name = Python paradigm = multi paradigm: object oriented, imperative, functional year = 1991 designer = Guido van Rossum developer = Python Software Foundation latest release version = 2.6 latest release date =… …   Wikipedia

  • Chaos (disambiguation) — Chaos ,(derived from the Ancient Greek Χάος),refers to unpredictability, and is the antithetical concept of cosmos.Chaos may also refer to:* Chaos theory, a branch of mathematics and physics that deals with the behavior of certain nonlinear… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”