- Water-electrolyte imbalance
ICDO =
OMIM =
MedlinePlus =
eMedicineSubj =
eMedicineTopic =
MeshID = D014883Electrolyte s play a vital role in maintaininghomeostasis within the body. They help to regulate myocardial and neurological function, fluid balance, oxygen delivery, acid-base balance and much more. Electrolyte imbalances can develop by the following mechanisms: excessive ingestion; diminished elimination of an electrolyte; diminished ingestion or excessive elimination of an electrolyte. The most common cause of electrolyte disturbances isrenal failure .The most serious electrolyte disturbances involve abnormalities in the levels of
sodium ,potassium , and/orcalcium . Other electrolyte imbalances are less common, and often occur in conjunction with major electrolyte changes. Chroniclaxative abuse or severediarrhea orvomiting can lead to electrolyte disturbances along withdehydration . People suffering from bulimia or anorexia are at especially high risk for an electrolyte imbalance.Nomenclature
There is a standard nomenclature for electrolyte disorders:
# The name starts with a prefix denoting whether the electrolyte is abnormally elevated ("hyper-") or depleted ("hypo-").
# The word stem then gives the name of the electrolyte inLatin . If no Latin equivalent exists, then the corresponding term in English is used.
# The name ends with the suffix "-emia," meaning "in theblood ." (Note, this doesn't mean that the disturbance is "only" in the blood; usually, electrolyte disturbance is systemic. However, since the disturbance is usually detected fromblood test ing, the convention has developed.)For instance, elevated potassium in the blood is called "hyperkalemia" from the Latin term for potassium, "kalium".
Table of common electrolyte disturbances
General Function
Electrolytes are important because they are what cells (especially nerve, heart, muscle) use to maintain voltages across their cell membranes and to carry electrical impulses (nerve impulses, muscle contractions) across themselves and to other cells. Kidneys work to keep the electrolyte concentrations in blood constant despite changes in your body. For example, during heavy exercise, electrolytes are lost in sweat, particularly sodium and potassium. These electrolytes must be replaced to keep the electrolyte concentrations of the body fluids constant.
=Electrolyte abnormalities and ECG changes=The most notable feature of hyperkalemia is the "tent shaped" or "peaked" T wave. Delayed ventricular depolarization leads to a widened QRS complex and the P wave becomes wider and flatter. When hyperkalemia becomes severe, the ECG resembles a sine wave as the P wave disappears from view. In contrast, hypokalemia is associated with flattening of the T wave and the appearance of a U wave. When untreated, hypokalemia may lead to severe arrhythmias.
The fast ventricular depolarization and repolarization associated with hypercalcemia lead to a characteristic shortening of the QT interval. Hypocalcemia has the opposite effect, lengthening the QT interval.
ee also
*
Acidosis
*Alkalosis
*Dehydration
*Malnutrition
*Starvation
Wikimedia Foundation. 2010.