- Asteroid family
An asteroid family is a population of
asteroid s that share similarorbital elements , such assemimajor axis , eccentricity, and orbitalinclination . The members of the families are thought to be fragments of past asteroid collisions.General properties
Large, prominent families contain several hundred recognized asteroids (and many more smaller objects which may be either not-yet-analyzed, or not-yet-discovered). Small, compact families can have only about ten identified members. About 33% to 35% of asteroids in the main belt are family members.
There are about 20 to 30 reliably recognized families, with several tens of less certain groupings. Most asteroid families are found in the main asteroid belt, although several family-like groups such as the
Pallas family ,Hungaria family , and thePhocaea family lie at smallersemi-major axis or larger inclination than the main belt.One family has been identified associated with the
dwarf planet dp|HaumeaMichael E. Brown , Kristina M. Barkume, Darin Ragozzine & Emily L. Schaller, "A collisional family of icy objects in the Kuiper belt", Nature, 446, (March 2007), pp 294-296.] . Some studies have tried to find evidence of collisional families among thetrojan asteroid s, but at present the evidence is inconclusive.Origin and evolution
The families are thought to form as a result of collisions between asteroids. In many or most cases the parent body was shattered, but there are also several families which resulted from a large cratering event which did not disrupt the parent body (e.g. the Vesta, Pallas, Hygiea, and Massalia families). Such "cratering families" typically consist of a single large body and a swarm of asteroids that are much smaller. Some families (e.g. the
Flora family ) have complex internal structures which are not satisfactorily explained at the moment, but may be due to several collisions in the same region at different times.Due to the method of origin, all the members have closely matching compositions for most families. Notable exceptions are those families (such as the
Vesta family ) which formed from a large differentiated parent body.Asteroid families are thought to have lifetimes of the order of a billion years, depending on various factors (e.g. smaller asteroids are lost faster). This is significantly shorter than the Solar System's age, so few if any are relics of the early Solar System. Decay of families occurs both because of slow dissipation of the orbits due to perturbations from Jupiter or other large bodies, and because of collisions between asteroids which grind them down to small bodies. Such small asteroids then become subject to perturbations such as the
Yarkovsky effect that can push them towardsorbital resonance s with Jupiter over time. Once there, they are relatively rapidly ejected from the asteroid belt. Tentative age estimates have been obtained for some families, ranging from hundreds of millions of years to less than several million years for e.g. the compactKarin family . Old families are thought to contain few small members, and this is the basis of the age determinations.It is supposed that many very old families have lost all the smaller and medium-sized members, leaving only a few of the largest intact. A suggested example of such old family remains are the
9 Metis and113 Amalthea pair. Further evidence for a large number of past families (now dispersed) comes from analysis of chemical ratios iniron meteorite s. These show that there must have once been at least 50 to 100 parent bodies large enough to be differentiated, that have since been shattered to expose their cores and produce the actual meteorites (Kelley & Gaffey 2000).Identification of members and interlopers
When the orbital elements of main belt asteroids are plotted (typically
inclination vs. eccentricity, or vs.semi-major axis ), a number of distinct concentrations are seen against the rather uniform background distribution of generic asteroids. These concentrations are the asteroid families.Strictly speaking, families and their membership are identified by analysing the so-called
proper orbital elements rather than the current osculatingorbital elements , which regularly fluctuate on timescales of tens of thousands of years. The "proper elements" are related constants of motion that remain almost constant for times of at least tens of millions of years, and perhaps longer.The
Japan eseastronomer Kiyotsugu Hirayama (1874-1943) pioneered the estimation of proper elements for asteroids, and first identified several of the most prominent families in 1918. In his honor, asteroid families are sometimes calledHirayama families . This particularly applies to the five prominent groupings discovered by him.Present day computer-assisted searches have identified several tens of asteroid families. The most prominent algorithms have been theHierarchical Clustering Method (HCM) which looks for groupings with small nearest-neighbour distances in orbital element space, and the Wavelet Analysis Method (WAM) which builds a density-of-asteroids map in orbital element space, and looks for density peaks.
The boundaries of the families are somewhat vague because at the edges they blend into the background density of asteroids in the main belt. For this reason the number of members even among discovered asteroids is usually only known approximately, and membership is uncertain for asteroids near the edges.
Additionally, some "interlopers" from the
heterogeneous background asteroid population are expected even in the central regions of a family. Since the true family members caused by the collision are expected to have similar compositions, most such interlopers can in principle be recognised by spectral properties which do not match those of the bulk of family members. A prominent example is1 Ceres , the largest asteroid, which is an interloper in the family once named after it (theCeres family , now theGefion family ).Spectral characteristics can also be used to determine the membership (or otherwise) of asteroids in the outer regions of a family, as has been used e.g. for the
Vesta family , whose members have an unusual composition.Family types
Wikimedia Foundation. 2010.