Colossal magnetoresistance

Colossal magnetoresistance

Colossal magnetoresistance (CMR) is a property of some materials, mostly manganese-based perovskite oxides, that enables them to dramatically change their electrical resistance in the presence of a magnetic field. The magnetoresistance of conventional materials enables changes in resistance of up to 5%, but materials featuring CMR may demonstrate resistance changes by orders of magnitude.

Initially discovered in mixed-valence perovskite manganites in the 1950s by G. H. Jonker and J. H. van Santen.,[1] a first theoretical description in terms of the double-exchange mechanism was given early on. In this model, the spin orientation of adjacent Mn-moments is associated with kinetic exchange of eg-electrons. Consequently, alignment of the Mn-spins by an external magnetic field causes higher conductivity. Relevant experimental work was done by Volger,[2] Wollan and Koehler,[3] and later on by Jirak et al.[4] and Pollert et al.[5]

However the double exchange model did not adequately explain the high insulating-like resistivity above the transition temperature.[6] In the 1990s, work by R. von Helmholt et al.[7] and Jin et al.[8] initiated a large number of further studies. Although there is still no complete understanding of the phenomenon, there is a variety of theroetical and experimental work providing a deeper understanding of the relevant effects.

One prominent model is the so-called half-metallic ferromagnetic model, which is based on spin-polarized (SP) band structure calculations using the local spin-density approximation (LSDA) of the density functional theory (DFT) where separate calculations are carried out for spin-up and spin-down electrons. The half-metallic state is concurrent with the existence of a metallic majority spin band and a nonmetallic minority spin band in the ferromagnetic phase.

This model is not the same as the Stoner Model of itinerant ferromagnetism. In the Stoner model, a high density of states at the Fermi level makes the nonmagnetic state unstable. With SP calculations on covalent ferromagnets, the exchange-correlation integral in the LSDA-DFT takes the place of the Stoner parameter. The density of states at the Fermi level does not play a special role.[9] A significant advantage of the half-metallic model is that it does not rely on the presence of mixed-valency as does the double exchange mechanism and it can therefore explain the observation of CMR in stoichiometric phases like the pyrochlore Tl2Mn2O7. Microstructural effects have also been investigated for polycrystalline samples and it has been found that the magnetoresistance is often dominated by the tunneling of spin polarized electrons between grains, giving rise to an intrinsic grain-size dependence to the magnetoresistance.[10][11]

Hitherto, however, a fully quantitative understanding of the CMR effect has been elusive and it is still the subject of current research activities. Early prospects of great opportunities for the development of new technologies have not yet come to fruition.

See also

References

  1. ^ G. H. Jonker and J. H. Van Santen,Physica 16 (1950), p. 377
  2. ^ J. Volger. Physica 20 (1954), p. 49
  3. ^ E.O. Wollan and W.C. Koehler. Phys. Rev. 100 (1955), p. 545
  4. ^ Z.B. Z. Jirak et al., JMMM 53 (1985), p. 153
  5. ^ E. Pollert et al., J. Phys. Chem. Solids 43 (1982), p. 1137
  6. ^ J. N. Lalena and D. A. Cleary "Principles of Inorganic Materials Design," 2nd ed., John Wiley & Sons, New York, p. 361 (2010).
  7. ^ R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz K. and Samwer, Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films, Phys. Rev. Lett. 71 (1993), p. 2331, doi:10.1103/PhysRevLett.71.2331
  8. ^ S. Jin et al., Science 264 (1994), p. 413
  9. ^ R. Zeller Computational Nanoscience: Do It Yourself, J. Grotendorst, S. Blũgel, D. Marx (Eds.), John von Neumann Institute for Computing, Jũlich, NIC Series, Vol. 31, ISBN 3-00-017350-1, pp. 419-445, 2006.
  10. ^ J. N. Lalena and D. A. Cleary "Principles of Inorganic Materials Design," 2nd ed., John Wiley & Sons, New York, p. 361-362 (2010).
  11. ^ For a review see: E. Dagotto. Nanoscale Phase Separation and Colossal Magnetoresistance. Springer 2003.

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Magnetoresistance — is the property of a material to change the value of its electrical resistance when an external magnetic field is applied to it. The effect was first discovered by William Thomson (more commonly known as Lord Kelvin) in 1856, but he was unable to …   Wikipedia

  • Magnetoresistance colossale — Magnétorésistance colossale La magnétorésistance colossale, ou CMR (pour l anglais Colossal MagnetoResistance), est une propriété de certains matériaux, principalement des oxydes de manganèse issus de pérovskites, qui leur permet de modifier leur …   Wikipédia en Français

  • Magnétorésistance Colossale — La magnétorésistance colossale, ou CMR (pour l anglais Colossal MagnetoResistance), est une propriété de certains matériaux, principalement des oxydes de manganèse issus de pérovskites, qui leur permet de modifier leur résistance électrique de… …   Wikipédia en Français

  • Magnétorésistance colossale — La magnétorésistance colossale, ou CMR (pour l anglais Colossal MagnetoResistance), est une propriété de certains matériaux, principalement des oxydes de manganèse issus de pérovskites, qui leur permet de modifier leur résistance électrique de… …   Wikipédia en Français

  • Giant magnetoresistance — Founding results of Fert et al. Giant magnetoresistance (GMR) is a quantum mechanical magnetoresistance effect observed in thin film structures composed of alternating ferromagnetic and non magnetic layers. The 2007 Nobel Prize in physics was… …   Wikipedia

  • Гигантское магнетосопротивление — Гигантское магнетосопротивление, гигантское магнитосопротивление[1], ГМС (англ. Giant magnetoresistance, GMR)  квантовомеханический эффект, наблюдаемый в тонких металлических плёнках, состоящих из чередующихся ферромагнитных и… …   Википедия

  • Колоссальное магнетосопротивление — Колоссальное магнитное сопротивление, КСМ (англ. Colossal magnetoresistance, CMR) квантовомеханический эффект заключающийся в сильной зависимости электрического сопротивления материала от величины внешнего магнитного поля. Термин применяется …   Википедия

  • CMR-Effekt — Der Kolossale Magnetoresistive Effekt (CMR Effekt) (engl. Colossal Magneto Resistance) ist eine physikalische Anomalie, bei der sich der elektrische Widerstand einiger Materialien bei Anwesenheit eines Magnetischen Feldes massiv verändert. Das… …   Deutsch Wikipedia

  • Magnetorresistencia colosal — La magnetorresistencia colosal (CMR) es la propiedad de algunos materiales, principalmente óxidos con estructura de perovskita basados en manganeso) que les permite cambiar considerablemente su resistencia eléctrica en presencia de un campo… …   Wikipedia Español

  • Magnetorresistencia — La magnetorresistencia es una propiedad que tienen ciertos materiales de variar su resistencia eléctrica cuando son sometidas a un campo magnético. Este efecto fue descubierto por William Thomson en el 1857 aunque no fue capaz de disminuir la… …   Wikipedia Español

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”