 Lifelike cellular automaton

A cellular automaton (CA) is Lifelike (in the sense of being similar to Conway's Game of Life) if it meets the following criteria:
 The array of cells of the automaton has two dimensions.
 Each cell of the automaton has two states (conventionally referred to as "alive" and "dead", or alternatively "on" and "off")
 The neighborhood of each cell is the Moore neighborhood; it consists of the eight adjacent cells to the one under consideration and (possibly) the cell itself.
 In each time step of the automaton, the new state of a cell can be expressed as a function of the number of adjacent cells that are in the alive state and of the cell's own state; that is, the rule is outer totalistic (sometimes called semitotalistic).
This class of cellular automata is named for the Game of Life (B3/S23), the most famous cellular automaton, which meets all of these criteria. Many different terms are used to describe this class. It is common to refer to it as the "Life family" or to simply use phrases like "similar to Life".
Contents
Notation for rules
There are three standard notations for describing these rules, that are similar to each other but incompatible. Wolfram & Packard (1985) use the Wolfram code, a decimal number the binary representation of which has bits that correspond to each possible number of neighbors and state of a cell; the bits of this number are zero or one accordingly as a cell with that neighborhood is dead or alive in the next generation.^{[1]} The other two notations unpack the same sequence of bits into a string of characters that is more easily read by a human.
In the notation used by Mirek's Cellebration, a rule is written as a string x/y where each of x and y is a sequence of distinct digits from 0 to 8, in numerical order. The presence of a digit d in the x string means that a live cell with d live neighbors survives into the next generation of the pattern, and the presence of d in the y string means that a dead cell with d live neighbors becomes alive in the next generation. For instance, in this notation, Conway's Game of Life is denoted 23/3.^{[2]}^{[3]}
In the notation used by the Golly opensource cellular automaton package and in the RLE format for storing cellular automaton patterns, a rule is written in the form By/Sx where x and y are the same as in the MCell notation. Thus, in this notation, Conway's Game of Life is denoted B3/S23. The "B" in this format stands for "birth" and the "S" stands for "survival".^{[4]}
A selection of Lifelike rules
There are 2^{18} = 262,144 possible Lifelike rules, only a small fraction of which have been studied in any detail. In the descriptions below, all rules are specified in Golly/RLE format.
Notable Lifelike rules Rule Name Description and sources B1357/S1357 Replicator Edward Fredkin's replicating automaton: every pattern is eventually replaced by multiple copies of itself.^{[2]}^{[3]}^{[4]} B2/S Seeds All patterns are phoenixes, meaning that every live cell immediately dies, and many patterns lead to explosive chaotic growth. However, some engineered patterns with complex behavior are known.^{[2]}^{[5]}^{[6]} B25/S4 This rule supports a small selfreplicating pattern which, when combined with a small glider pattern, causes the glider to bounce back and forth in a pseudorandom walk.^{[4]}^{[7]} B3/S012345678 Life without Death Also known as Inkspot or Flakes. Cells that become alive never die. It combines chaotic growth with more structured ladderlike patterns that can be used to simulate arbitrary Boolean circuits.^{[2]}^{[4]}^{[8]}^{[9]} B3/S23 Life Highly complex behavior.^{[10]}^{[11]} B34/S34 34 Life Was initially thought to be a stable alternative to Life, until computer simulation found that larger patterns tend to explode. Has many small oscillators and spaceships.^{[2]}^{[12]}^{[13]} B35678/S5678 Diamoeba Forms large diamonds with chaotically fluctuating boundaries. First studied by Dean Hickerson, who in 1993 offered a $50 prize to find a pattern that fills space with live cells; the prize was won in 1999 by David Bell.^{[2]}^{[4]}^{[14]} B36/S125 2x2 If a pattern is composed of 2x2 blocks, it will continue to evolve in the same form; grouping these blocks into larger powers of two leads to the same behavior, but slower. Has complex oscillators of high periods as well as a small glider.^{[2]}^{[15]} B36/S23 HighLife Similar to Life but with a small selfreplicating pattern.^{[2]}^{[4]}^{[16]} B3678/S34678 Day & Night Symmetric under onoff reversal. Has engineered patterns with highly complex behavior.^{[2]}^{[4]}^{[17]} B368/S245 Morley Named after Stephen Morley; also called Move. Supports very highperiod and slow spaceships.^{[2]}^{[4]}^{[18]} Several more rules are listed and described in the MCell rule list^{[2]} and by Eppstein (2010), including some rules with B0 in which the background of the field of cells alternates between live and dead at each step.^{[4]}
Any automaton of the above form that contains the element B1 (e.g. B17/S78, or B145/S34) will always be explosive for any finite pattern: at any step, consider the cell (x,y) that has minimum xcoordinate among cells that are on, and among such cells the one with minimum ycoordinate. Then the cell (x1,y1) must have exactly one neighbor, and will become on in the next step. Similarly, the pattern must grow at each step in each of the four diagonal directions. Thus, any nonempty starting pattern leads to explosive growth.^{[4]}
Generalizations
There are other cellular automata which are inspired by the Game of Life, but which do not fit the definition of `lifelike' given in this article, because their neighbourhoods are larger than the Moore neighbourood, or they are defined on threedimensional lattices, or they use a different lattice topology. For example:
 Larger than Life is a family of cellular automata studied by Kellie Michele Evans. They have very large radius neighbourhoods, but perform `birth/death' thresholding similar to Conway's life. These automata have eerily organic `glider' and `blinker' structures.^{[19]}
 RealLife is the “continuum limit″ of Evan's Larger Than Life CA, in the limit as the neighbourhood radius goes to infinity, while the lattice spacing goes to zero. Technically, they are not cellular automata at all, because the underlying “space” is the continuous Euclidean plane R^{2}, not the discrete lattice Z^{2}. They have been studied by Marcus Pivato.^{[20]}
 Carter Bays has proposed a variety of generalizations of the Game of Life to threedimensional CA defined on Z^{3}.^{[21]} Bays has also studied twodimensional lifelike CA with triangular or hexagonal neighbourhoods.^{[22]}^{[23]}
References
 ^ Wolfram, Stephen; Packard, N. H. (1985), "Twodimensional cellular automata", Journal of Statistical Physics 38 (5–6): 901–946, doi:10.1007/BF01010423 Reprinted in Wolfram, Stephen (1994), Cellular Automata and Complexity, Westview Press, pp. 211–249, ISBN 9780201626643.
 ^ ^{a} ^{b} ^{c} ^{d} ^{e} ^{f} ^{g} ^{h} ^{i} ^{j} ^{k} Wójtowicz, Mirek, Cellular Automaton Rules Lexicon — Family: Life, Mirek's Cellebration, http://www.mirekw.com/ca/rullex_life.html.
 ^ ^{a} ^{b} Wuensche, Andrew (2011), "16.10 The gameofLife and other Lifelike rules – rcode", Exploring Discrete Dynamics: The DDLAB manual, Luniver Press, pp. 145–146, ISBN 9781905986316, http://books.google.com/books?id=qsktzY_Vg8QC&pg=PA145.
 ^ ^{a} ^{b} ^{c} ^{d} ^{e} ^{f} ^{g} ^{h} ^{i} ^{j} Eppstein, David (2010), "Growth and decay in lifelike cellular automata", in Adamatzky, Andrew, Game of Life Cellular Automata, Springer, pp. 71–98, arXiv:0911.2890, doi:10.1007/9781849962179_6, ISBN 9781849962162.
 ^ Silverman, Brian, "Changing the Rules", The Virtual Computer, Mathematical Association of America, http://www.maa.org/editorial/mathgames/seeds.html.
 ^ Patterns for Seeds collected by Jason Summers.
 ^ Nivasch, Gabriel (2007), The photon/XOR system, http://yucs.org/~gnivasch/life/photonXOR/.
 ^ Toffoli, Tommaso; Margolus, Norman (1987), "1.2 Animatebynumbers", Cellular Automata Machines: A New Environment for Modeling, MIT Press, pp. 6–7.
 ^ Griffeath, David; Moore, Cristopher (1996), "Life without Death is Pcomplete", Complex Systems 10: 437–447, http://psoup.math.wisc.edu/java/lwodpc/lwodpc.html.
 ^ Gardner, Martin (October 1970), "Mathematical Games  The fantastic combinations of John Conway's new solitaire game "life"", Scientific American 223: 120–123.
 ^ Berlekamp, E. R.; Conway, John Horton; Guy, R.K. (2004), Winning Ways for your Mathematical Plays (2nd ed.), A K Peters Ltd.
 ^ Poundstone, William (1985), The Recursive Universe: Cosmic Complexity and the Limits of Scientific Knowledge, Contemporary Books, p. 134, ISBN 9780809252022.
 ^ Eisenmann, Jack, 34 LIFE, http://web.mac.com/teisenmann/34life/main.html.
 ^ Gravner, Janko; Griffeath, David (1998), "Cellular automaton growth on Z^{2}: theorems, examples, and problems", Advances in Applied Mathematics 21 (2): 241–304, doi:10.1006/aama.1998.0599, MR1634709.
 ^ Johnston, Nathaniel (2010), "The B36/S125 “2x2” LifeLike Cellular Automaton", in Adamatzky, Andrew, Game of Life Cellular Automata, Springer, pp. 99–114, doi:10.1007/9781849962179_7, ISBN 9781849962162.
 ^ Bell, David, HighLife  An Interesting Variant of Life, http://www.tip.net.au/~dbell/articles/HighLife.zip.
 ^ Bell, David, Day & Night  An Interesting Variant of Life, http://www.tip.net.au/~dbell/articles/DayNight.zip.
 ^ Morley, Stephen (2005), b368s245 Guns, http://safalra.com/special/b368s245/guns/.
 ^ Evans, Kellie Michele (2003), "Larger than Life: thresholdrange scaling of Life's coherent structures", Physica D 183 (1–2): 45–67, doi:10.1016/S01672789(03)001556.
 ^ Pivato, Marcus (2007), "RealLife: the continuum limit of Larger than Life cellular automata", Theoretical Computer Science 372 (1): 46–68, arXiv:math.DS/0503504, doi:10.1016/j.tcs.2006.11.019.
 ^ Bays, Carter (2006), "A note about the discovery of many new rules for the game of threedimensional life", Complex Systems 16 (4): 381–386.
 ^ Bays, Carter (2007), "The discovery of glider guns in a game of life for the triangular tessellation", Journal of Cellular Automata 2 (4): 345–350.
 ^ Bays, Carter (2005), "A note on the game of life in hexagonal and pentagonal tessellations", Complex Systems 15 (3): 245–252.
External links
 Eppstein, David, Gliders in LifeLike Cellular Automata, http://fano.ics.uci.edu/ca/.
 Griffeath, David, Totalistic Growth Rules with Moore Neighborhood, The Primordial Soup Kitchen, http://psoup.math.wisc.edu/extras/moore/moore.html.
 Maydwell, George, LifeLike Cellular Automata Rules, Modern Cellular Automata — Live Color Cellular Automata, http://www.collidoscope.com/modernca/lifelikerules.html.
Categories: Cellular automata
Wikimedia Foundation. 2010.