Hemimetric space

Hemimetric space

In mathematics, a hemimetric space is a generalization of a metric space, obtained by removing the requirements of identity of indiscernibles and of symmetry. It is thus a generalization of both a quasimetric space and a pseudometric space, while being a special case of a prametric space.

Definition

A hemimetric on a set X is a function dcolon X imes X o mathbb{R} such that
#,! d(x,y)geq 0 (positivity);
#,! d(x,z) leq d(x,y) + d(y,z) (subadditivity/triangle inequality);
#,! d(x,x)=0;for all x,y,zin X.

Hence, essentially d is a metric which fails to satisfy symmetry and the property that distinct points have positive distance (the identity of indiscernibles).

A symmetric hemimetric is a pseudometric.

A hemimetric that can discern points is a quasimetric.

A hemimetric induces a topology on X in the same way that a metric does, a basis of open sets being :{B_r(x): xin X, r>0},

where B_r(x)={yin X : d(x,y) is the "r"-ball centered at x.

References

*planetmath|id=5903|title=hemimetric


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Prametric space — In topology, a prametric space generalizes the concept of a metric space by not requiring the conditions of symmetry, indiscernability and the triangle inequality. Prametric spaces occur naturally as maps between metric spaces.DefinitionA… …   Wikipedia

  • Sierpiński space — In mathematics, Sierpiński space (or the connected two point set) is a finite topological space with two points, only one of which is closed.It is the smallest example of a topological space which is neither trivial nor discrete. It is named… …   Wikipedia

  • List of mathematics articles (H) — NOTOC H H cobordism H derivative H index H infinity methods in control theory H relation H space H theorem H tree Haag s theorem Haagerup property Haaland equation Haar measure Haar wavelet Haboush s theorem Hackenbush Hadamard code Hadamard… …   Wikipedia

  • Espace Hémimétrique — En mathématiques, un espace hémimétrique est un cas particulier d espace pramétrique, à qui l on impose de vérifier l inégalité triangulaire. Sommaire 1 Définition 2 Cas particuliers 3 Propriétés topologiques …   Wikipédia en Français

  • Espace hemimetrique — Espace hémimétrique En mathématiques, un espace hémimétrique est un cas particulier d espace pramétrique, à qui l on impose de vérifier l inégalité triangulaire. Sommaire 1 Définition 2 Cas particuliers 3 Propriétés topologiques …   Wikipédia en Français

  • Espace hémimétrique — En mathématiques, les notions d espace hémimétrique et de fonction hémimétrique sont la généralisation de celles d espace pseudométrique et d écart, en n imposant pas que la fonction soit symétrique. Sommaire 1 Définition 2 Cas particuliers 3… …   Wikipédia en Français

  • Hémimétrique — Espace hémimétrique En mathématiques, un espace hémimétrique est un cas particulier d espace pramétrique, à qui l on impose de vérifier l inégalité triangulaire. Sommaire 1 Définition 2 Cas particuliers 3 Propriétés topologiques …   Wikipédia en Français

  • Metric (mathematics) — In mathematics, a metric or distance function is a function which defines a distance between elements of a set. A set with a metric is called a metric space. A metric induces a topology on a set but not all topologies can be generated by a metric …   Wikipedia

  • Distance — This article is about distance in the mathematical or physical sense. For other senses of the term, see distance (disambiguation). Proximity redirects here. For the 2001 film, see Proximity (film). Distance (or farness) is a numerical description …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”