Prametric space

Prametric space

In topology, a prametric space generalizes the concept of a metric space by not requiring the conditions of symmetry, indiscernability and the triangle inequality. Prametric spaces occur naturally as maps between metric spaces.

Definition

A prametric space (M,mathrm{d}) is a set M together with a function mathrm{d}:M imes M omathbb{R} (called a prametric) which satisfies the following conditions:
#,!mathrm{d}(x,y)ge0 ("non-negativity");
#,!mathrm{d}(x,x)=0;

The definition of a prametric allows for the case of ,!mathrm{d}(x,y)=0 even if x e y. A prametric is said to be separating if ,!mathrm{d}(x,y)=0 implies that x=y, for all x,yin M (this is the identity of indiscernibles).

A prametric is called symmetric if ,! mathrm{d}(x,y)=d(y,x) for all x,yin M.

A symmetric, separating prametric is called a semimetric, and the corresponding space is a semimetric space.

A prametric which obeys the triangle inequality is called a hemimetric; a separating hemimetric is a quasimetric; a symmetric hemimetric is a pseudometric.

Examples

Another example is that of the distance between subsets of a metric space. That is, given a metric space (X, ho) and some collection of subsets {V_i: V_isubset X,, iin I} indexed by a set I, one defines

:d(i,j)= ho(V_i,V_j).

This distance is a symmetric prametric on the index set I.----A second example is the non-symmetric prametric on the reals:

:d(x,y)=egin{cases}
x-y| & mbox{for } xle y \ 1 & mbox{for } x > yend{cases}

The topology generated by this prametric (as described below) is that of the Sorgenfrey line.----The set {0,1} with the prametric d(0,1)=1 and d(1,0)=0 generates the connected two-point topology for this set, which makes it a ml|Particular_point_topology|Sierpi.C5.84ski_space|Sierpinski space. Thus, Sierpinski space is prametrizable but not metrizable.

Topology

For a prametric, define the ball as

:B_r(p) = { x in M mid d(x,p) < r }.

At the most basic level, the definition of an open set for a prametric is as one might expect: every point must be an inner point with respect to this ball. That is, a subset Usubset M is defined to be open if and only if, for each point pin U, there exists an r>0 such that B_r(p) subset U.

What is unusual is that any given ball need not be an open set. The set of balls will not typically be a base for the topology; to obtain a topology, one instead works with the collection of open sets, as defined above.

In general, the interior of a ball B_r(p) may fail to contain "p", and the interior may even be empty; this is in sharp contrast to what one expects for a metric space.

Another unusual aspect is that a point in a closed set may have a distance from the closed set that is greater than zero. That is, if overline{A}subset M is a closed set, and xinoverline{A}, it may not be true that d(x,overline{A})=0. The converse does hold: if d(x,overline{A})=0, then xinoverline{A}. The set of points at distance zero from a set defines a kind of closure, a praclosure.

To be clear, in the above, a set Csubset M is defined to be closed if and only if d(p,C)>0 for all pin Mackslash C.

Such topologies do have some nice properties: a topological space with a topology generated by a prametric is a sequential space.

A topological space is said to be a prametrizable topological space if the space can be given a prametric such that the prametric topology coincides with the given topology on the space. With the additional appropriate axioms, one may say that a space is semimetrizable, quasimetrizable, etc.

Axioms

The following table shows the various special cases, according to applicable axioms:

References

* A.V. Arkhangelskii, L.S.Pontryagin, "General Topology I", (1990) Springer-Verlag, Berlin. ISBN 3-540-18178-4


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Hemimetric space — In mathematics, a hemimetric space is a generalization of a metric space, obtained by removing the requirements of identity of indiscernibles and of symmetry. It is thus a generalization of both a quasimetric space and a pseudometric space, while …   Wikipedia

  • List of mathematics articles (P) — NOTOC P P = NP problem P adic analysis P adic number P adic order P compact group P group P² irreducible P Laplacian P matrix P rep P value P vector P y method Pacific Journal of Mathematics Package merge algorithm Packed storage matrix Packing… …   Wikipedia

  • Espace pramétrique — En mathématiques, un espace pramétrique[1] est un espace topologique plus général que les espaces métriques, ne nécessitant ni symétrie, ni indiscernabilité, ni la validité de l inégalité triangulaire. De tels espaces apparaissent naturellement… …   Wikipédia en Français

  • Espace Pramétrique — En mathématiques, un espace pramétrique est un espace topologique plus général que les espaces métriques, ne nécessitant ni symétrie, ni indiscernabilité, ni la validité de l inégalité triangulaire. De tels espaces apparaîssent naturellement pour …   Wikipédia en Français

  • Espace prametrique — Espace pramétrique En mathématiques, un espace pramétrique est un espace topologique plus général que les espaces métriques, ne nécessitant ni symétrie, ni indiscernabilité, ni la validité de l inégalité triangulaire. De tels espaces apparaîssent …   Wikipédia en Français

  • Pramétrique — Espace pramétrique En mathématiques, un espace pramétrique est un espace topologique plus général que les espaces métriques, ne nécessitant ni symétrie, ni indiscernabilité, ni la validité de l inégalité triangulaire. De tels espaces apparaîssent …   Wikipédia en Français

  • Metric (mathematics) — In mathematics, a metric or distance function is a function which defines a distance between elements of a set. A set with a metric is called a metric space. A metric induces a topology on a set but not all topologies can be generated by a metric …   Wikipedia

  • Lower limit topology — In mathematics, the lower limit topology or right half open interval topology is a topology defined on the set R of real numbers; it is different from the standard topology on R and has a number of interesting properties. It is the topology… …   Wikipedia

  • Preclosure operator — In topology, a preclosure operator, or Čech closure operator is a map between subsets of a set, similar to a topological closure operator, except that it is not required to be idempotent. That is, a preclosure operator obeys only three of the… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”