Rank (differential topology)

Rank (differential topology)

In mathematics, the rank of a differentiable map f : MN between differentiable manifolds at a point pM is the rank of the derivative of f at p. Recall that the derivative of f at p is a linear map

T_p f : T_p M \to T_{f(p)}N\,

from the tangent space at p to the tangent space at f(p). As a linear map between vector spaces it has a well-defined rank, which is just the dimension of the image in Tf(p)N:

\operatorname{rank}(f)_p = \dim(\operatorname{im}(T_p f)).

Constant rank maps

A differentiable map f : MN is said to have constant rank if the rank of f is the same for all p in M. Constant rank maps have a number of nice properties and are an important concept in differential topology.

Three special cases of constant rank maps occur. A constant rank map f : MN is

  • an immersion if rank f = dim M (i.e. the derivative is everywhere injective),
  • a submersion if rank f = dim N (i.e. the derivative is everywhere surjective),
  • a local diffeomorphism if rank f = dim M = dim N (i.e. the derivative is everywhere bijective).

The map f itself need not be injective, surjective, or bijective for these conditions to hold, only the behavior of the derivative is important. For example, there are injective maps which are not immersions and immersions which are not injections. However, if f : MN is a smooth map of constant rank then

  • if f is injective it is an immersion,
  • if f is surjective it is a submersion,
  • if f is bijective it is a diffeomorphism.

Constant rank maps have a nice description in terms of local coordinates. Suppose M and N are smooth manifolds of dimensions m and n respectively, and f : MN is a smooth map with constant rank k. Then for all p in M there exist coordinates (x1, ..., xm) centered at p and coordinates (y1, ..., yn) centered at f(p) such that f is given by

f(x^1,\ldots,x^m) = (x^1,\ldots, x^k,0,\ldots,0)\,

in these coordinates.

Examples

Gimbal lock occurs because the map T3RP3 does not have rank 3 at all points. This animation shows a set of three gimbals mounted together to allow three degrees of freedom generically (rank 3 at regular points). When all three gimbals are lined up (in the same plane), the system can only move in two dimensions from this configuration, not three – it has rank 2 at such a singular point – and is in gimbal lock. In this case it can pitch or yaw, but not roll (rotate in the plane that the axes all lie in).

Maps whose rank is generically maximal, but drops at certain singular points, occur frequently in coordinate systems. For example, in spherical coordinates, the rank of the map from the two angles to a point on the sphere (formally, a map T2S2 from the torus to the sphere) is 2 at regular points, but is only 1 at the north and south poles (zenith and nadir).

A subtler example occurs in charts on SO(3), the rotation group. This group occurs widely in engineering, due to 3-dimensional rotations being heavily used in navigation, nautical engineering, and aerospace engineering, among many other uses. Topologically, SO(3) is the real projective space RP3, and it is often desirable to represent rotations by a set of three numbers, known as Euler angles (in numerous variants), both because this is conceptually simple, and because one can build a combination of three gimbals to produce rotations in three dimensions. Topologically this corresponds to a map from the 3-torus T3 of three angles to the real projective space RP3 of rotations, but this map does not have rank 3 at all points (formally because it cannot be a covering map, as the only (non-trivial) covering space is the hypersphere S3), and the phenomenon of the rank dropping to 2 at certain points is referred to in engineering as gimbal lock.

References

  • Lee, John (2003). Introduction to Smooth Manifolds. Graduate Texts in Mathematics 218. New York: Springer. ISBN 978-0-387-95495-0. 

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Differential topology — In mathematics, differential topology is the field dealing with differentiable functions on differentiable manifolds. It is closely related to differential geometry and together they make up the geometric theory of differentiable manifolds.… …   Wikipedia

  • Frobenius theorem (differential topology) — In mathematics, Frobenius theorem gives necessary and sufficient conditions for finding a maximal set of independent solutions of an overdetermined system of first order homogeneous linear partial differential equations. In modern geometric terms …   Wikipedia

  • Rank — is a very broad term with several meanings. As a noun it is usually related to a relative position or to some kind of ordering (see also ranking). As an adjective it is used to mean profuse, conspicuous, absolute, or unpleasant, especially in… …   Wikipedia

  • Rank (mathematics) — Rank means a wide variety of things in mathematics, including: * Rank (linear algebra) * Rank of a tensor * Rank of an abelian group * Rank of a Lie group * Percentile rank * Rank (differential topology) * Rank of a vector bundle * Rank (set… …   Wikipedia

  • Rank (linear algebra) — The column rank of a matrix A is the maximum number of linearly independent column vectors of A. The row rank of a matrix A is the maximum number of linearly independent row vectors of A. Equivalently, the column rank of A is the dimension of the …   Wikipedia

  • Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… …   Wikipedia

  • Differential form — In the mathematical fields of differential geometry and tensor calculus, differential forms are an approach to multivariable calculus that is independent of coordinates. Differential forms provide a better[further explanation needed] definition… …   Wikipedia

  • Algebraic topology — is a branch of mathematics which uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism. In many situations this is too much to hope for… …   Wikipedia

  • List of mathematics articles (R) — NOTOC R R. A. Fisher Lectureship Rabdology Rabin automaton Rabin signature algorithm Rabinovich Fabrikant equations Rabinowitsch trick Racah polynomials Racah W coefficient Racetrack (game) Racks and quandles Radar chart Rademacher complexity… …   Wikipedia

  • Differentiable manifold — A nondifferentiable atlas of charts for the globe. The results of calculus may not be compatible between charts if the atlas is not differentiable. In the middle chart the Tropic of Cancer is a smooth curve, whereas in the first it has a sharp… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”