Andrica's conjecture

Andrica's conjecture

Andrica's conjecture (named after Dorin Andrica) is a conjecture regarding the gaps between prime numbers. [ D. Andrica, "Note on a conjecture in prime number theory." Studia Univ. Babes-Bolyai Math. 31 (1986), no. 4, 44--48. ]

The conjecture states that the inequality:

:sqrt{p_{n+1 - sqrt{p_n} < 1 holds for all n, where p_n is the nth prime number.If g_n = p_{n+1} - p_n denotes the nth prime gap, then Andrica's conjecture can also be rewritten as:g_n < 2sqrt{p_n} + 1.

Empirical evidence

Imran Ghory has used data on the largest prime gaps to confirm the conjecture for n up to 1.3002 x 1016. ["Prime Numbers: The Most Mysterious Figures in Math", John Wiley & Sons, Inc., 2005, p.13.]

The discrete function A_n = sqrt{p_{n+1 - sqrt{p_n} is plotted in the figures opposite. The high-water marks for A_n occur for n = 1, 2, and 4, with "A"4approx 0.670873 ..., with no larger value among the first 105 primes. Since the Andrica function decreases asymptotically as n increases, a prime gap of ever increasing size is needed to make the difference large as n becomes large. It therefore seems highly likely the conjecture is true, although this has not yet been proven.

Generalizations

As a generalization of Andrica's conjecture, the following equation has been considered:: p _ {n+1} ^ x - p_ n ^ x = 1, where p_n is the nth prime and "n" can be any positive integer.

The largest possible solution x is easily seen to occur for n=1, when "x"max=1. The smallest solution x is conjectured to be "x"min approx 0.567148 ... OEIS|id=A038458, known as the Smarandache constant, which occurs for n=30. [M.L.Perez. [http://www.gallup.unm.edu/~smarandache/conjprim.txt Five Smarandache Conjectures on Primes] ]

This conjecture has also been stated as a conjectural inequality, the "generalized Andrica conjecture":: p _ {n+1} ^ x - p_ n ^ x < 1 for x < x_{min}.

See also

* Cramér's conjecture

References and notes

External links

* [http://planetmath.org/encyclopedia/AndricasConjecture.html "Andrica's Conjecture"] at PlanetMath
* [http://planetmath.org/?op=getobj&from=objects&id=9636 "Generalized Andrica conjecture"] at PlanetMath
*


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Conjecture de Legendre — La conjecture de Legendre, proposée par Adrien Marie Legendre, énonce qu il existe un nombre premier entre n2 et (n+1)2 pour tout entier n. Cette conjecture est l un des problèmes de Landau, et n a pas été résolue à l heure actuelle (2011).… …   Wikipédia en Français

  • Conjecture de Cramér — En mathématiques, la conjecture de Cramér, formulée par le mathématicien suédois Harald Cramér en 1936[1], pronostique que où pn est le n ième nombre premier et désigne le O de Landau ; cette conjecture n est pas démontrée à ce jour …   Wikipédia en Français

  • Vermutung von Andrica — Die Vermutung von Andrica, benannt nach Dorin Andrica,[1] ist eine Vermutung zu den Primzahllücken. Sei pn die n te Primzahl. Dann besagt die Vermutung von Andrica, dass folgende Ungleichung für alle natürlichen n gilt: Unter Verwendung der n ten …   Deutsch Wikipedia

  • Conjetura de Andrica — Archivo:Andrica conjecture1.PNG An para los 100 primeros números primos. Archivo:Andrica conjecture2.PNG An para los 200 primeros números primos. Archivo:Andrica conjecture3.PNG An para los 500 primeros números primos. La conjetura de Andrica… …   Wikipedia Español

  • Cramér's conjecture — In number theory, Cramér s conjecture, formulated by the Swedish mathematician Harald Cramér in 1936,[1] states that where pn denotes the nth prime number, O is big O notation, and log is the natural logarithm. Intuitively, this means the gaps… …   Wikipedia

  • Oppermann's conjecture — In mathematics, Oppermann s conjecture, named after L. Oppermann[1], relates to the distribution of the prime numbers.[2] It states that, for any integer x > 1, there is at least one prime between x(x − 1) and x2, and… …   Wikipedia

  • Liste de conjectures mathématiques — Ce qui suit est une liste de conjectures mathématiques, non exhaustive. Elles sont divisées en quatre sections, en accord avec leur état en 2011. Voir aussi : Conjecture d Erdős (en), qui liste des conjectures de Paul Erdős et de ses… …   Wikipédia en Français

  • List of conjectures — This is an incomplete list of mathematical conjectures. They are divided into four sections, according to their status in 2007. See also: * Erdős conjecture, which lists conjectures of Paul Erdős and his collaborators * Unsolved problems in… …   Wikipedia

  • List of mathematics articles (A) — NOTOC A A Beautiful Mind A Beautiful Mind (book) A Beautiful Mind (film) A Brief History of Time (film) A Course of Pure Mathematics A curious identity involving binomial coefficients A derivation of the discrete Fourier transform A equivalence A …   Wikipedia

  • Prime gap — A prime gap is the difference between two successive prime numbers. The n th prime gap, denoted g n , is the difference between the ( n +1) th and the n th prime number, i.e.: g n = p n + 1 − p n .We have g 1 = 1, g 2 = g 3 = 2, and g 4 = 4. The… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”