Oppermann's conjecture

Oppermann's conjecture

In mathematics, Oppermann's conjecture, named after L. Oppermann[1], relates to the distribution of the prime numbers.[2] It states that, for any integer x > 1, there is at least one prime between

x(x − 1) and x2,

and at least another prime between

x2 and x(x + 1).

Alternative statement

Let π be the prime-counting function:

π(x) = the number of prime numbers less than or equal to x.

Then

π(x2 − x) < π(x2) < π(x2 + x) for x > 1.

This means that between the square of a number x and the square of the same number plus (or minus) that number, there is a prime number.

If true, this would entail the unproven Legendre conjecture and Andrica conjecture. Oppermann's has not been proved as of December 2010.

References

See also



Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Conjecture de Legendre — La conjecture de Legendre, proposée par Adrien Marie Legendre, énonce qu il existe un nombre premier entre n2 et (n+1)2 pour tout entier n. Cette conjecture est l un des problèmes de Landau, et n a pas été résolue à l heure actuelle (2011).… …   Wikipédia en Français

  • Opperman (disambiguation) — Opperman or Oppermann may refer to: Contents 1 People 2 Mathematics 3 Organisations 4 Legal cases 5 See al …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”