Transverse relaxation optimized spectroscopy

Transverse relaxation optimized spectroscopy

Transverse relaxation optimized spectroscopy (TROSY) is an experiment in protein NMR spectroscopy that allows studies of large molecules or complexes.

The application of NMR to large molecules is normally limited by the fact that the line widths generally increase with molecular mass. Larger molecules have longer rotational correlation times and consequently shorter transverse relaxation times (T2). In other words, the NMR signal from larger molecules decays more rapidly, leading to line broadening in the NMR spectrum and so poor resolution.

In an HSQC spectrum in which decoupling has not been applied, peaks appear as multiplets due to J-coupling. Crucially the different multiplet components have different widths. This is due to constructive or destructive interaction between different relaxation mechanisms. Typically relaxation for large proteins at high magnetic field strengths the transverse (T2) is dominated by the dipole-dipole (DD) mechanism and the chemical shift anisotropy (CSA) mechanism. As the relaxation mechanisms are generally correlated but contribute to the overall relaxation rate of a given component with different signs, the multiplet components relax with very different overall rates. The TROSY experimentK. Pervushin, R. Riek, G. Wider, and K. Wüthrich (1997) "Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution." Proc. Natl. Acad. Sci. USA 94 12366-71 PMID 9356455] is designed to select the component for which the different relaxation mechanisms have almost cancelled, leading to a single, sharp peak in the spectrum. This significantly increases both spectral resolution and sensitivity, both of which are at a premium when studying large and complex biomolecules.

This approach significantly extends the molecular mass range that can be studied by NMR, but it generally requires high magnetic fields to achieve the necessary balance between the CSA and DD relaxation mechanisms; CSAs scale with field strength, while dipole-dipole couplings are field-independent.

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Nuclear magnetic resonance spectroscopy of proteins — (usually abbreviated protein NMR) is a field of structural biology in which NMR spectroscopy is used to obtain information about the structure and dynamics of proteins. The field was pioneered by Richard R. Ernst and Kurt Wüthrich[1], among… …   Wikipedia

  • Protein nuclear magnetic resonance spectroscopy — (usually abbreviated protein NMR) is a field of structural biology in which NMR spectroscopy is used to obtain information about the structure and dynamics of proteins. The field was pioneered by, among others, Kurt Wüthrich, who shared the Nobel …   Wikipedia

  • spectroscopy — spectroscopist /spek tros keuh pist/, n. /spek tros keuh pee, spek treuh skoh pee/, n. the science that deals with the use of the spectroscope and with spectrum analysis. [1865 70; SPECTRO + SCOPY] * * * Branch of analysis devoted to identifying… …   Universalium

  • Magnetic resonance imaging — MRI redirects here. For other meanings of MRI or Mri, see MRI (disambiguation). Magnetic resonance imaging Intervention Sagittal MR image of the knee ICD 10 PCS B?3?ZZZ …   Wikipedia

  • Circular dichroism — (CD) refers to the differential absorption of left and right circularly polarized light.[1][2] This phenomenon was discovered by Jean Baptiste Biot, Augustin Fresnel, and Aimé Cotton in the first half of the 19th century.[3] It is exhibited in… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”