Dehn twist

Dehn twist
A positive Dehn twist applied to a cylinder about the red curve c modifies the green curve as shown.

In geometric topology, a branch of mathematics, a Dehn twist is a certain type of self-homeomorphism of a surface (two-dimensional manifold).

Contents

Definition

Suppose that c is a simple closed curve in a closed, orientable surface S. Let A be a tubular neighborhood of c. Then A is an annulus and so is homeomorphic to the Cartesian product of

S^1 \times I,

where I is the unit interval. Give A coordinates (s, t) where s is a complex number of the form

e

with

\theta \in [0,2\pi],

and t in the unit interval.

Let f be the map from S to itself which is the identity outside of A and inside A we have

\displaystyle f(s,t) = (s e^{{\rm{i}} 2 \pi t}, t).

Then f is a Dehn twist about the curve c.

Dehn twists can also be defined on a non-orientable surface S, provided one starts with a 2-sided simple closed curve c on S.

Mapping class group

The 3g − 1 curves from the twist theorem, shown here for g = 3.

It is a theorem of Max Dehn that maps of this form generate the mapping class group of isotopy classes of orientation-preserving homeomorphisms of any closed, oriented genus-g surface. W. B. R. Lickorish later rediscovered this result with a simpler proof and in addition showed that Dehn twists along 3g − 1 explicit curves generate the mapping class group (this is called by the punning name "Lickorish twist theorem"); this number was later improved by Stephen P. Humphries to 2g + 1, for g > 1, which he showed was the minimal number.

Lickorish also obtained an analogous result for non-orientable surfaces, which require not only Dehn twists, but also "Y-homeomorphisms."

See also

  • Lantern relation

References

  • Andrew J. Casson, Steven A Bleiler, Automorphisms of Surfaces After Nielsen and Thurston, Cambridge University Press, 1988. ISBN 0-521-34985-0.
  • Stephen P. Humphries, Generators for the mapping class group, in: Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977), pp. 44–47, Lecture Notes in Math., 722, Springer, Berlin, 1979. MR0547453
  • W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds. Ann. of Math. (2) 76 1962 531—540. MR0151948
  • W. B. R. Lickorish, A finite set of generators for the homeotopy group of a 2-manifold, Proc. Cambridge Philos. Soc. 60 (1964), 769–778. MR0171269

Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Max Dehn — (13 novembre 1878 – 27 juin 1952) est un mathématicien allemand. Il a étudié les fondations de la géométrie avec Hilbert à Göttingen en 1899, et obtenu une preuve du théorème de Jordan pour les polygones. En 1900, il a soutenu …   Wikipédia en Français

  • Max Dehn — Born November 13, 1878(1878 11 13) …   Wikipedia

  • Mapping class group — In mathematics, in the sub field of geometric topology, the mapping class group is an important algebraic invariant of a topological space. Briefly, the mapping class group is a discrete group of symmetries of the space. Contents 1 Motivation 2… …   Wikipedia

  • Lickorish–Wallace theorem — In mathematics, the Lickorish–Wallace theorem in the theory of 3 manifolds states that any closed, orientable, connected 3 manifold may be obtained by performing Dehn surgery on a framed link in the 3 sphere with +/ 1 surgery coefficients.… …   Wikipedia

  • Fibré de Seifert — En topologie, un fibré de Seifert est une variété de dimension 3 munie d une « bonne » partition en cercles. Plus précisément, c est un fibré en cercles sur un orbifold de dimension 2. Ces variétés ont été introduites par Herbert… …   Wikipédia en Français

  • List of mathematics articles (D) — NOTOC D D distribution D module D D Agostino s K squared test D Alembert Euler condition D Alembert operator D Alembert s formula D Alembert s paradox D Alembert s principle Dagger category Dagger compact category Dagger symmetric monoidal… …   Wikipedia

  • Difféomorphisme — En mathématiques, un difféomorphisme est un isomorphisme dans la catégorie des variétés différentielles : c est une bijection différentiable d une variété dans une autre, dont la bijection réciproque est aussi différentiable. Image d une… …   Wikipédia en Français

  • Conjecture de géométrisation — En mathématiques, et plus précisément en géométrie, la conjecture de géométrisation de Thurston affirme que les variétés compactes de dimension 3 peuvent être décomposées en sous variétés admettant l une des huit structures géométriques appelées… …   Wikipédia en Français

  • Geometrization conjecture — Thurston s geometrization conjecture states that compact 3 manifolds can be decomposed canonically into submanifolds that have geometric structures. The geometrization conjecture is an analogue for 3 manifolds of the uniformization theorem for… …   Wikipedia

  • List of geometric topology topics — This is a list of geometric topology topics, by Wikipedia page. See also: topology glossary List of topology topics List of general topology topics List of algebraic topology topics Publications in topology Contents 1 Low dimensional topology 1.1 …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”