- Lyusternik–Schnirelmann category
In
mathematics , the Lyusternik–Schnirelmann category (or, Lusternik–Schnirelmann category, LS-category, or simply, category) of atopological space "X" is thetopological invariant defined as the smallestcardinality of anopen covering of "X" bycontractible subsets. For example, if "X" is thecircle , this takes the value two.Recently a different normalisation of the invariant has been adopted, which is one less than the original definition by Lusternik and Schnirelmann. Such a normalisation has been adopted in the definitive monograph by Cornea, Lupton, Oprea, and Tanré (see below).
In general it is not so easy to compute this invariant, which was initially introduced by
Lazar Lyusternik andLev Schnirelmann in connection with variational problems. It has a close connection withalgebraic topology , in particularcup-length . In the modern normalisation, the cup-length is a lower bound for LS category.It was, as originally defined for the case of "X" a
manifold , the lower bound for the number ofcritical point s aMorse function on "X" could possess (cf.Morse theory ).ee also
*
Ganea conjecture
* Systolic categoryReferences
*
R. H. Fox , [http://links.jstor.org/sici?sici=0003-486X%28194104%292%3A42%3A2%3C333%3AOTLC%3E2.0.CO%3B2-V "On the Lusternik-Schnirelmann category"] ,Annals of Mathematics 42 (1941), 333-370.*
Samuel Eilenberg ,Tudor Ganea , [http://links.jstor.org/sici?sici=0003-486X%28195705%292%3A65%3A3%3C517%3AOTLCOA%3E2.0.CO%3B2-J "On the Lusternik-Schnirelmann category of abstract groups"] , Annals of Mathematics, 2nd Ser., 65 (1957), no. 3, 517 – 518*
F. Takens , [http://dz-srv1.sub.uni-goettingen.de/sub/digbib/loader?did=D166832 "The minimal number of critical points of a function on compact manifolds and the Lusternik-Schnirelmann category"] ,Inventiones Mathematicae 6 (1968), 197-244.* Tudor Ganea, "Some problems on numerical homotopy invariants", Lecture Notes in Math. 249 (Springer, Berlin, 1971), pp. 13 – 22 MathSciNet| id=0339147
*
Ioan James , [http://dx.doi.org/10.1016/0040-9383(78)90002-2 "On category, in the sense of Lusternik-Schnirelmann"] , Topology 17 (1978), 331-348.* Kathryn Hess, [http://dx.doi.org/10.1016/0040-9383(91)90006-P "A proof of Ganea's conjecture for rational spaces"] , Topology 30 (1991), no. 2, 205--214. MathSciNet| id=1098914
*
Norio Iwase , [http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=19333 "Ganea's conjecture on Lusternik-Schnirelmann category"] , in "Bulletin of theLondon Mathematical Society ", 30 (1998), no.6, 623 – 634 MathSciNet| id=1642747* Norio Iwase, [http://dx.doi.org/S0040-9383(00)00045-8 "A∞-method in Lusternik-Schnirelmann category"] , Topology 41 (2002), no. 4, 695--723. MathSciNet| id=1905835
* Lucile Vandembroucq, [http://dx.doi.org/10.1016/S0040-9383(02)00007-1 "Fibrewise suspension and Lusternik-Schnirelmann category"] , Topology 41 (2002), no. 6, 1239--1258. MathSciNet| id=1923222
* Octav Cornea, Gregory Lupton, John Oprea, Daniel Tanré, "Lusternik-Schnirelmann category", Mathematical Surveys and Monographs, 103.
American Mathematical Society , Providence, RI, 2003 ISBN 0-8218-3404-5
Wikimedia Foundation. 2010.