- Xenon flash lamp
A xenon flash lamp is an
electric glow discharge lamp designed to produce extremely intense, incoherent, full-spectrum white light for very short durations.Construction
The lamp comprises a sealed tube, often made of
fused quartz , which is filled with a mixture of gases, primarilyxenon , and electrodes to carry electrical current to the gas mixture. Additionally, a high voltage power source is necessary to energize the gas mixture. A chargedcapacitor is usually used for this purpose so as to allow very speedy delivery of very highelectrical current when the lamp is triggered.The glass envelope is most commonly a thin tube, which may be straight, or bent into a number of different shapes, including helical, "U" shape, and circular (to surround a
camera lens for shadowlessphotography —'ring flashes'). The electrodes protrude into each end of the tube, and are connected to acapacitor that is charged to a relatively high voltage. This is usually between 250 and 2000volt s, depending on the length of the tube, and the specific gas mixture.Operation
A flash is initiated by first ionizing the gas mixture, then sending a very large pulse of current through the ionized gas. Ionization is necessary to decrease the
electrical resistance of the gas so that a pulse measuring as much as thousands ofampere s can travel through the tube. The initial ionization pulse may be generated by a step-uptransformer . A short high voltage peak produces the first ions at the sharp tip of thecathode (the housing is grounded). By applyingradio frequency voltage the ions do not need to reach the anode, but couple capacitively to the housing (and the anode). This may be enhanced by putting a metal band onto the glass or a wire that is wrapped around the glass tube or by using water cooling, since water has a highdielectric constant and if ionized also conducts. When this current pulse travels through the tube, it exciteselectrons surrounding the xenon atoms causing them to jump to higher energy levels. The atoms' electrons immediately drop back to a lower orbit, producing photons in the process. Depending on the size and application of the flashlamp, xenon fill pressures may range from a fewkilopascal s to tens of kilopascals (0.01–0.1 atmosphere or tens to hundreds oftorr ). For low electrode wear the electrode needs to be at high temperature for thethermionic emission of electrons.Output spectrum
As with all ionized gases, xenon flash lamps emit light in various
spectral line s. This is the same phenomenon that givesneon sign s their characteristic color. However, for xenon, there are enough spectral lines, and they are distributed across the spectrum in such a way, that to the human eye the light appears mostlywhite . The spectral profile of a xenon arc peaks in the green range, which is well matched to many applications involving visible light. This is the primary motivation for selecting xenon as a filler in spite of its high cost;krypton is also occasionally used, although it is even more expensive. Krypton has much greater output in the near-IR range, which is better matched to the absorption profile of Nd:YAG laser media than xenon emissions.During normal operation in most photographic-type systems, the spectral component of a flashlamp's emission is overshadowed by blackbody radiation. The proportion of light produced by spectral action compared to thermal action depends on current density in the arc. Higher current densities favor blackbody radiation over spectral radiation. For this reason, many laser systems intentionally utilize lower current densities than photographic flashes since more narrow spectral lines are usually favorable for pumping lasers, while a broadband output is better for photographic purposes. Production of greenish blue light instead of pure white is a clear indication of low-current density operation.
Intensity and duration of flash
For short pulses the number of emitted electrons from the cathode is the limit. For longer pulses or continuous operation the cooling is the limit. Discharge durations for common flashlamps are in the
microsecond to a fewmillisecond s range and can have repetition rates of hundreds ofhertz .The flash that emanates from a xenon flash lamp may be so intense that it can ignite flammable materials within a short distance of the tube. Carbon
nanotubes are particularly susceptible to this spontaneous ignition when exposed to the light from a flashtube. [ [http://news.rpi.edu/update.do?artcenterkey=383&setappvar=page(1) RPI: News & Events - We Have Ignition! Carbon Nanotubes Ignite When Exposed to Flash ] ] Similar effects may be exploited for use in aesthetic or medical procedures known as Intense Pulsed Light (IPL) treatments. IPL can be used for treatments such as hair removal and destroyinglesion s or moles.Applications
Because the duration of the flash that is emitted by a xenon flash tube can be accurately controlled, and due to the high intensity of the light, xenon flash lamps are commonly used as photographic
strobe light s. Xenon flashlamps are also used in the technique of very high speed or "stop-motion" photography, which was pioneered byHarold Edgerton in the 1930s. Because they can generate bright, attention-getting flashes with a relatively small continuous input of electrical power, they are also used in warning lights,emergency vehicle lighting , fire alarm annunciator devices ("horn lights"), aircraft anticollision beacons, and other similar applications.Due to their high-intensity and relative brightness at short
wavelength s (extending into theultraviolet ) and short pulsewidths, flashlamps are also ideally suited as light sources for pumping atoms in alaser to excited states where they can subsequently be stimulated to emit coherent monochromatic light. Proper selection of the filler gas is crucial here, so the maximum of radiated output energy is concentrated in the bands that are the best absorbed by thelasing medium ; e.g. krypton flashlamps are more suitable than xenon flashlamps for pumping s, as krypton emission in near infrared is better matching to the absorption spectrum of Nd:YAG.Xenon flash lamps have been used to produce an intense flash of white light, some of which is absorbed by that produces the laser power for
inertial confinement fusion . In total about 1 to 1.5% of the electrical power fed into the flash tubes is turned into useful laser light for this application.Animation
References
* [http://www.heraeus-noblelight.com/en/laser-and-ipl-lamps/information-for-laser-lamps/services-and-events/flash-lamp-emission-spectra.html Emission spectra of different flash lamps]
ee also
*
Strobe light
*Strobe beacon
*Flash (photography)
*List of light sources
Wikimedia Foundation. 2010.