Landau damping

Landau damping

In physics, Landau damping, named after its discoverer, the eminent Soviet physicist Lev Davidovich Landau, is the effect of damping (exponential decrease as a function of time) of longitudinal space charge waves in plasma or a similar environment. This phenomenon prevents an instability from developing, and creates a region of stability in the parameter space.

Wave-particle interactions

Landau damping occurs due to the energy exchange between a wave with phase velocity v_{ph} and particles in the plasma with velocity approximately equal to v_{ph}, who can interact strongly with the wave. Those particles having velocities slightly less than v_{ph} will be accelerated by the wave electric field to move with the wave phase velocity, while those particles with velocities slightly greater than v_{ph} will be decelerated by the wave electric field, losing energy to the wave.

In a collisionless plasma the particle velocities have a Maxwellian distribution function. If the slope of the function is negative, the number of particles with velocities slightly less than the wave phase velocity is greater than the number of particles with velocities slightly greater. Hence, there are more particles gaining energy from the wave than losing to the wave, which leads to wave damping.If, however, the slope of the function is positive, the number of particles with velocities slightly less than the wave phase velocity is smaller than the number of particles with velocities slightly greater. Hence, there are more particles losing energy to the wave than gaining from the wave, which leads to a resultant increase in the wave energy.

Physical interpretation

Mathematical proof of Landau damping is somewhat involved, requiring the use of contour integration. But there is a simple physical interpretation (although not strictly correct) that helps to visualize this phenomenon.

It is possible to imagine Langmuir waves as waves in the sea, and the particles as surfers trying to catch the wave, all moving in the same direction. If the surfer is moving on the water surface at a velocity slightly less than the waves he will eventually be caught and pushed along the wave (gaining energy), while a surfer moving slightly faster than a wave will be pushing on the wave as he moves uphill (losing energy to the wave).

It is worth to note that only the surfers are playing an important role in this energy interactions with the waves; a beachball floating on the water (zero velocity) will go up and down as the wave goes by, not gaining energy at all. Also, a boat that moves very fast (faster than the waves) does not exchange much energy with the wave.

Bibliography

*Chen, Francis F. "Introduction to Plasma Physics and Controlled Fusion". Second Ed., 1984 Plenum Press, New York.

*Tsurutani, B., and Lakhina, G. "Some basic concepts of wave-particle interactions in collisionless plasmas". Reviews of Geophysics 35(4), p.491-502. [http://download.scientificcommons.org/442719 Download]


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Landau, Lev Davidovich — ▪ Russian physicist born Jan. 9 [Jan. 22, New Style], 1908, Baku, Russian Empire (now Azerbaijan) died April 1, 1968, Moscow, Russia, U.S.S.R.  Soviet theoretical physicist, one of the founders of the quantum theory of condensed matter whose… …   Universalium

  • Landau, Lev (Davidovich) — born Jan. 22, 1908, Baku, Azerbaijan, Russian Empire died April 1, 1968, Moscow, Russia, U.S.S.R. Soviet physicist. After graduating from Leningrad State University, he studied at Niels Bohr s institute in Copenhagen. He is known for his work in… …   Universalium

  • Landau–Lifshitz–Gilbert equation — In physics, the Landau Lifshitz Gilbert equation , named for Lev Landau and Evgeny Lifshitz and T. L. Gilbert, is a name used for a differential equation describing the precessional motion of magnetization M in a solid. It is a modification by… …   Wikipedia

  • Landau–Lifshitz equation — In physics, the Landau Lifshitz equation (LLE), named for Lev Landau and Evgeny Lifshitz, is a name used for several different differential equations *For the Landau Lifshitz aeroacoustic equation see aeroacoustics. *For the Landau Lifshitz… …   Wikipedia

  • Amortissement Landau — En physique, l’amortissement Landau, du nom de son découvreur[1], le physicien russe Lev Davidovich Landau, désigne le phénomène d amortissement (décroissance exponentielle en fonction du temps) des oscillations longitudinale du champ… …   Wikipédia en Français

  • Lev Landau — Infobox Scientist name = Lev Davidovich Landau imagesize = 170px birth date = birth date|1908|1|22|mf=y birth place = Baku, Russian Empire death date = death date and age|1968|4|1|1908|1|22 death place = Moscow, Soviet Union field = Physics alma… …   Wikipedia

  • Cédric Villani — Born 5 October 1973 (1973 10 05) (age 38) Brive la Gaillarde, France …   Wikipedia

  • List of Russian people — The Millennium of Russia monument in Veliky Novgorod, featuring the statues and reliefs of the most celebrated people in the first 1000 years of Russian history …   Wikipedia

  • Scientific phenomena named after people — This is a list of scientific phenomena and concepts named after people (eponymous phenomena). For other lists of eponyms, see eponym. NOTOC A* Abderhalden ninhydrin reaction Emil Abderhalden * Abney effect, Abney s law of additivity William de… …   Wikipedia

  • Magnetohydrodynamics — For the academic journal, see Magnetohydrodynamics (journal). Magnetohydrodynamics (MHD) (magneto fluid dynamics or hydromagnetics) is an academic discipline which studies the dynamics of electrically conducting fluids. Examples of such fluids… …   Wikipedia

Share the article and excerpts

Direct link
https://en-academic.com/dic.nsf/enwiki/367856 Do a right-click on the link above
and select “Copy Link”