- Thermomagnetic convection
Ferrofluid s can be used to transfer heat, since heat and mass transport in such magnetic fluids can be controlled using an externalmagnetic field .B. Finlayson first explained in 1970 (in his paper "Convective instability of ferromagnetic fluids", "Journal of Fluid Mechanics " 40:753-767) how an external magnetic field imposed on a ferrofluid with varyingmagnetic susceptibility , e.g., due to a temperature gradient, results in a nonuniform magnetic body force, which leads to thermomagnetic convection. This form of heat transfer can be useful for cases where conventionalconvection fails to provide adequate heat transfer, e.g., in miniature microscale devices or under reduced gravity conditions. A comprehensive review of thermomagnetic convection (in A. Mukhopadhyay, R. Ganguly, S. Sen, and I. K. Puri, "Scaling analysis to characterize thermomagnetic convection", " [http://www.elsevier.com/wps/find/journaldescription.cws_home/210/description International Journal of Heat and Mass Transfer] " 48:3485-3492, (2005)) also shows that this form of convection can be correlated with a dimensionless magneticRayleigh number .The ferrofluid
magnetization depends on the local value of the applied magnetic field H as well as on the fluid magnetic susceptibility. In a ferrofluid flow encompassing varyingtemperature s, the susceptibility is a function of the temperature. This produces a force that can be expressed in theNavier–Stokes or momentum equation governing fluid flow as the "Kelvin body force (KBF)".The KBF creates a static pressure field that is symmetric about a magnet, e.g., a line dipole, that produces a curl-free force field, i.e., curl(ℑ) = 0 for constant temperature flow. Such a symmetric field does not alter the velocity. However, if the temperature distribution about the imposed magnetic field is asymmetric so is the KBF in which case curl(ℑ) ≠ 0. Such an asymmetric body force leads to ferrofluid motion across
isotherm s.Bednarz et al. " [http://eng.jcu.edu.au/Staff/Profiles/tomasz-bednarz/index.shtml] " have studied extensively magnetic convection of paramagnetic fluids in a cubic enclosure heated and cooled from two opposite walls in many different configurations of the magnetic field. Their results are confirmed in both numerical and experimental analyses.
Wikimedia Foundation. 2010.