Carver Mead

Carver Mead

Professor Carver Andress Mead (born 1 May 1934, in Bakersfield, California) is a prominent U.S. computer scientist. He is the Gordon and Betty Moore professor emeritus at the California Institute of Technology (Caltech), having taught there for over 40 years.

Mead studied electrical engineering at Caltech, getting his B.S. in 1956, his M.S. in 1957, and his Ph.D. degree in 1960.

Mead–Conway VLSI design and Moore's law

Carver Mead and Lynn Conway co-wrote the landmark text "Introduction to VLSI systems" in 1980, an important spearhead of the Mead & Conway revolution. A pioneering and well-written textbook, it has been used in VLSI integrated circuit education all over the world for decades. Mead is credited by Intel's (at that time Fairchild Semiconductor's) Gordon Moore of coining the term Moore's Law, [ [http://news.com.com/Moore+says+nanoelectronics+face+tough+challenges/2100-1006_3-5607422.html?tag=cd.top Moore says nanoelectronics face tough challenges - CNET News.com ] ] denoting the observation/prediction Moore did in 1965 about the growth rate of the transistor amount fitting on a single integrated circuit.

"Firsts"

In relation to his 2002 award with the National Medal of Technology, his biography at a webpage of the Technology Administration of the United States government says:

"Carver Mead is a key pioneer of modern microelectronics. His 40-year academic and industry career touches all aspects of microelectronics, from spearheading the development of tools and techniques for modern integrated circuit design, to laying the foundation for fabless semiconductor companies, to catalyzing the electronic design automation field, to training generations of engineers, to founding more than twenty companies, including Actel Corporation, Silicon Compilers, Synaptics, and Sonic Innovations."


"Carver's career is characterized by an endless string of "firsts." He built the first GaAs MESFET, a device that is today a mainstay of wireless electronics. He was the first to use a physics-based analysis to predict a lower limit to transistor size. His predictions, along with the notions of scalability that came with them, were instrumental in setting the industry on its path toward submicrometre technology. He was the first to predict millions of transistors on a chip, and, on the basis of these predictions, he developed the first techniques for designing big, complex microchips. He taught the world's first VLSI design course. He created the first software compilation of a silicon chip."


"Halfway through his career he switched direction, teaming with Professor John Hopfield and Nobelist Richard Feynman to study how animal brains compute. The trio catalyzed three fields: Neural Networks, Neuromorphic Engineering, and Physics of Computation. Carver created the first neurally inspired chips, including the silicon retina and chips that learn from experience, and founded the first companies to use these technologies: Synaptics, and Foveon, Inc., a Santa Clara, California company developing CMOS image sensor/processing chips (for use in e.g. digital photography)."


"Carver's teaching legacy is every bit as significant as his research. He taught the original founders of Sun Microsystems, Silicon Graphics, Silicon Design Labs, and countless others. His work in electronic design automation (EDA) created companies such as Silicon Compilers, Silerity, and Cascade Semiconductor Design. He and Ivan Sutherland created the computer science department at Caltech. The 1980 textbook he coauthored with Lynn Conway, "Introduction to VLSI Design", was standard training for a generation of engineers. His 1989 textbook, "Analog VLSI and Neural Systems", trained interdisciplinary researchers who are poised today to revolutionize the frontier of computing and neurobiology. Although retired, Carver continues his teaching tradition today: His new passion is finding a better way to teach freshman physics, using the quantum nature of matter as a sole basis."

Carver also pioneered the use of floating-gate transistors as a means of non-volatile storage for neuromorphic and other analog circuits.

"Collective Electrodynamics" approach to electromagnetism

Carver Mead has developed an approach he calls "Collective Electrodynamics" in which electromagnetic effects, including quantized energy transfer, derive from the interactions of the wavefunctions of electrons behaving collectively. [cite book | title = Collective Electrodynamics: Quantum Foundations of Electromagnetism | author = Carver Mead | url = http://books.google.com/books?vid=ISBN0262632608&id=GkDR4e2lo2MC&pg=PR25&lpg=PR25&dq=%22collective+electrodynamics%22&sig=JDuDZVfEitCgzu8en-wZLL4ogT0 | publisher = MIT Press | year = 2002 | isbn = 0262632608 ] In this formulation, the photon is a non-entity, and Planck's energy–frequency relationship comes from the interactions of electron eigenstates. The approach is related to John Cramer's transactional interpretation of quantum mechanics, to the Wheeler-Feynman absorber theory of electrodynamics, and to Gilbert N. Lewis's early description of electromagnetic energy exchange at zero interval in spacetime.

Quotations

*"Listen to the technology; find out what it's telling you."
*"The quantum world is a world of waves, not particles. So we have to think of electron waves and proton waves and so on. Matter is 'incoherent' when all its waves have a different wavelength, implying a different momentum. On the other hand, if you take a pure quantum system – the electrons in a superconducting magnet, or the atoms in a laser – they are all in phase with one another, and they demonstrate the wave nature of matter on a large scale. Then you can see quite visibly what matter is down at its heart." (Carver Mead Interview, American Spectator, Sep/Oct2001, Vol. 34 Issue 7, p68)

Awards

*In 1981 "Electronics Magazine" presented Mead and Conway with its annual Award for Achievement.
*In 1996 Mead was honored with the Phil Kaufman Award for his impact on electronic design industry.
*In 1999 Mead received the Lemelson-MIT Prize.
*In 2002 Mead was awarded the National Medal of Technology.
*Also in 2002 Mead received the Computer History Museum Fellow Award, "for his contributions in pioneering the automation, methodology and teaching of integrated circuit design".

References

External links

* [http://www.technology.gov/Medal/2002/bios/Carver_A._Mead.pdf National Medal of Technology citation, including the above biography] (PDF)
* [http://www.cs.caltech.edu/cspeople/faculty/mead_c.html Mead's page at Caltech]
* [http://www.computerhistory.org/events/fellows/fellows_10222002/announcement/index.shtml Computer History Museum Fellow Award citation] (including a photo)
* [http://laputan.blogspot.com/2003_09_21_laputan_archive.html "An Interview with Carver Mead" conducted by American Spectator]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Carver Mead — Carver Mead. Carver Andress Mead (* 1. Mai 1934 in Bakersfield, Kalifornien) ist ein US amerikanischer Informatiker und Pionier der modernen Mikroelektronik. Inhaltsverzeichnis …   Deutsch Wikipedia

  • Carver Mead — Saltar a navegación, búsqueda Carver Mead en 2005. Carver Andress Mead (*1 de mayo de 1934 en Bakersfield, California) es un prominente informático teórico estadounidense. Es profesor emérito (Go …   Wikipedia Español

  • Carver — can refer to any of the following: NOTOC People*Bob Carver, American physicist and audio equipment designer *George Washington Carver (1864 1943), American botanist and inventor *Jeffrey Carver (b. 1949), American science fiction author *Jesse… …   Wikipedia

  • Mead (disambiguation) — Mead is an alcoholic drink made from honey Mead may also refer to: Contents 1 People 2 Places 3 Companies …   Wikipedia

  • Mead — ist der Nachname folgender Personen: Albert E. Mead (1861–1913), US amerikanischer Politiker Andrea Mead Lawrence (1932–2009), US amerikanische Skirennläuferin Carver Mead (* 1934), US amerikanischer Informatiker und Pionier der modernen… …   Deutsch Wikipedia

  • Mead & Conway revolution — The Mead Conway revolution was the development of VLSI design and prototyping within or for academic institutions, both for education and research, and consequently breeding new kinds of industries based on microelectronics applications. Contents …   Wikipedia

  • Entwurf Integrierter Schaltungen — Der Entwurf Integrierter Schaltungen entstand um 1980 als eigenständige wissenschaftliche Disziplin. Der zunehmende Integrationsgrad erforderte die Abnabelung von der bisherigen Technologie, da wegen der – gemäß Moore s Gesetz – rasch… …   Deutsch Wikipedia

  • Lynn Conway — Conway in 2006 Born January 10, 1938 (1938 01 10) (age 73) White Plains, New York, U.S …   Wikipedia

  • Liste der Biografien/Mea–Mee — Biografien: A B C D E F G H I J K L M N O P Q …   Deutsch Wikipedia

  • E.I.S. — Das 1983 bis 1987 vom BMFT geförderte E.I.S. Projekt diente der Einführung der Mikroelektronik in der akademischen Lehre. Die Abkürzung „E.I.S.“ sollte das Anliegen der deutschen Vorkämpfer der weltweiten „VLSI Revolution“ zeigen, nämlich die… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”