Wedge sum

Wedge sum

In topology, the wedge sum (sometimes wedge product, though not to be confused with the exterior product, which also shares this terminology) is a "one-point union" of a family of topological spaces. Specifically, if "X" and "Y" are pointed spaces (i.e. topological spaces with distinguished basepoints "x"0 and "y"0) the wedge sum of "X" and "Y" is the quotient of the disjoint union of "X" and "Y" by the identification "x"0 ∼ "y"0::Xvee Y = (Xamalg Y);/ ;{x_0 sim y_0}More generally, suppose ("X""i")"i"∈"I" is a family of pointed spaces with basepoints {"p""i"}. The wedge sum of the family is given by::igvee_i X_i := coprod_i X_i;/ ;{p_isim p_j mid i,j in I}

In other words, the wedge sum is the joining of several spaces at a single point. This definition of course depends on the choice of {"p""i"} unless the spaces {"X""i"} are homogeneous.

Examples

The wedge sum of two circles is homeomorphic to a figure-eight space. The wedge sum of "n"-circles is often called a "bouquet of circles", while a wedge product of arbitrary spheres is often called a bouquet of spheres.

A common construction in homotopy is to identify all of the points along the equator of an "n"-sphere S^n. Doing so results in two copies of the sphere, joined at the point that was the equator:

:S^n/{sim} = S^n vee S^n

Let Psi be the map Psi:S^n o S^n vee S^n, that is, of identifying the equator down to a single point. Then addition of two elements f,ginpi_n(X,x_0) of the "n"-dimensional homotopy group pi_n(X,x_0) of a space "X" at the distinguished point x_0in X can be understood as the composition of f and g with Psi:

:f+g = (f vee g) circ Psi

Here, f and g are understood to be maps, f:S^n o X and similarly for g, which take a distinguished point s_0in S^n to a point x_0in X. Note that the above defined the wedge sum of two functions, which was possible because f(s_0)=g(s_0)=x_0, which was the point that is equivalenced in the wedge sum of the underlying spaces.

Categorical description

The wedge sum can be understood as the coproduct in the category of pointed spaces. Alternatively, the wedge sum can be seen as the pushout of the diagram "X" ← {•} → "Y" in the category of topological spaces (where {•} is any one point space).

Properties

Van Kampen's theorem gives certain conditions (which are usually fulfilled for well-behaved spaces, such as CW complexes) under which the fundamental group of the wedge sum of two spaces "X" and "Y" is the free product of the fundamental groups of "X" and "Y".

ee also

*Smash product


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Wedge — (von englisch wedge = „Keil“) bezeichnet: im Golfsport Schläger für kürzere Distanzen, siehe Golfschläger#Wedges in der Tontechnik keilförmige Lautsprecher für die Bühnen, siehe Monitoring (Tontechnik) in der Medizin den Druck beim Verschließen… …   Deutsch Wikipedia

  • Wedge-Produkt — Wedge (von englisch wedge = „Keil“) bezeichnet: im Golfsport Schläger für kürzere Distanzen, siehe Golfschläger#Wedges in der Bühnentechnik keilförmige Boxen, siehe Monitoring (Beschallung) in der Medizin den Druck beim Verschließen der… …   Deutsch Wikipedia

  • Wedge — The term wedge can refer to any of the following things:Physical Objects: * Wedge (mechanical device), a simple machine used to separate two objects, or portions of objects, through the application of force * Wedge (golf), a specialized type of… …   Wikipedia

  • Sum of products — Als disjunktive Normalform (kurz DNF) wird in der Booleschen Algebra eine in besonderer Weise normierte Funktionsdarstellung Boolescher Funktionen bezeichnet. Inhaltsverzeichnis 1 Definition 2 Erläuterung 3 Bildung 4 Beispiel für die Bildung der… …   Deutsch Wikipedia

  • Subset-Sum — Die Untermengensumme (engl. Subset Sum) ist ein berühmtes Problem der Informatik und des Operations Research. Es ist ein spezielles Rucksackproblem. Problembeschreibung Gegeben sei eine Menge von ganzen Zahlen I = {w1,w2,...,wn}. Gesucht ist eine …   Deutsch Wikipedia

  • Subset Sum — Die Untermengensumme (engl. Subset Sum) ist ein berühmtes Problem der Informatik und des Operations Research. Es ist ein spezielles Rucksackproblem. Problembeschreibung Gegeben sei eine Menge von ganzen Zahlen I = {w1,w2,...,wn}. Gesucht ist eine …   Deutsch Wikipedia

  • Edge-of-the-wedge theorem — In mathematics, the edge of the wedge theorem implies that holomorphic functions on two wedges with an edge in common are analytic continuations of each other provided they both give the same continuous function on the edge. It is used in quantum …   Wikipedia

  • Wedgeprodukt — Wedge (von englisch wedge = „Keil“) bezeichnet: im Golfsport Schläger für kürzere Distanzen, siehe Golfschläger#Wedges in der Bühnentechnik keilförmige Boxen, siehe Monitoring (Beschallung) in der Medizin den Druck beim Verschließen der… …   Deutsch Wikipedia

  • Mayer–Vietoris sequence — In mathematics, particularly algebraic topology and homology theory, the Mayer–Vietoris sequence is an algebraic tool to help compute algebraic invariants of topological spaces, known as their homology and cohomology groups. The result is due to… …   Wikipedia

  • Homotopy group — In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The base point preserving maps from an n dimensional sphere (with base point) into a given space (with base point) are collected into equivalence… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”