Cytoplasmic male sterility

Cytoplasmic male sterility

Cytoplasmic male sterility is total or partial male sterility associated with plant biology as the result of specific nuclear and mitochondrial interactions.[1] Male sterility is the failure of plants to produce functional anthers, pollen, or male gametes.

Contents

Background

The first documentation of male sterility was by Joseph Gottlieb Kölreuter, who observed anther abortion within species and specific hybrids. Cytoplasmic male sterility has now been identified in over 150 plant species.[2] It is more prevalent than female sterility, either because the male sporophyte and gametophyte are less protected from the environment than the ovule and embryo sac, or because it results from natural selection on mitochondrial genes which are maternally inherited and are thus not concerned with pollen production. Male sterility is easy to detect because a large number of pollen grains are produced and are easily studied. Male sterility is assayed through staining techniques (carmine, lactophenol or iodine), while detection of female sterility is by the absence of seeds. Male-sterile plants may be propagated, since they can still set seed, while female-sterile plants cannot. Male sterility can arised spontaneously via mutations in nuclear and/or cytoplasmic genes.

Male sterility can be either cytoplasmic or cytoplasmic–genetic. Cytoplasmic male sterility (CMS) is caused by the extranuclear genome (mitochondria or chloroplast) and shows maternal inheritance. Manifestation of male sterility in CMS may be controlled either entirely by cytoplasmic factors or by interaction between cytoplasmic and nuclear factors.

Cytoplasmic male sterility

Cytoplasmic male sterility, as the name indicates, is under extranuclear genetic control (under control of the mitochondrial or plastid genomes). It shows non-Mendelian inheritance, with male sterility inherited maternally. In general there are two types of cytoplasm: N (normal) and aberrant S (sterile) cytoplasms. These types exhibit reciprocal differences.

Cytoplasmic-genetic male sterility

While CMS is controlled by an extranuclear genome, nuclear genes may have the capability to restore fertility. When nuclear restoration of fertility genes (“Rf”) is available for a CMS system in any crop, it is cytoplasmic–genetic male sterility; the sterility is manifested by the influence of both nuclear (with Mendelian inheritance) and cytoplasmic (maternally inherited) genes. There are also restorers of fertility (Rf) genes that are distinct from genetic male sterility genes. The Rf genes have no expression of their own unless the sterile cytoplasm is present. Rf genes are required to restore fertility in S cytoplasm that causes sterility. Thus plants with N cytoplasm are fertile and S cytoplasm with genotype Rf- leads to fertiles while S cytoplasm with rfrf produces only male steriles. Another feature of these systems is that Rf mutations (i.e., mutations to rf or no fertility restoration) are frequent, so that N cytoplasm with Rfrf is best for stable fertility.

Cytoplasmic–genetic male sterility systems are widely exploited in crop plants for hybrid breeding due to the convenience of controlling sterility expression by manipulating the gene–cytoplasm combinations in any selected genotype. Incorporation of these systems for male sterility evades the need for emasculation in cross-pollinated species, thus encouraging cross breeding producing only hybrid seeds under natural conditions.

Cytoplasmic male sterility in hybrid breeding

Hybrid production requires a female plant in which no viable male gametes are borne. Emasculation is done to prevent a plant from producing pollen so that it serves only as a female parent. Another simple way to establish a female line for hybrid seed production is to identify or create a line that is unable to produce viable pollen. Since this male-sterile line cannot self-pollinate, seed formation is dependent upon pollen from the male line.

Cytoplasmic male sterility is used in hybrid seed production. In this case, the sterility is transmitted only through the female and all progeny will be sterile. This is not a problem for crops such as onions or carrots where the commodity harvested from the F1 generation is produced during vegetative growth. These CMS lines must be maintained by repeated crossing to a sister line (known as the maintainer line) that is genetically identical except that it possesses normal cytoplasm and is therefore male-fertile. In cytoplasmic–genetic male sterility restoration of fertility is done using restorer lines carrying nuclear restorer genes. The male-sterile line is maintained by crossing with a maintainer line carrying the same nuclear genome as the MS line but with normal fertile cytoplasm.

Cytoplasmic male sterility in hybrid maize breeding

Cytoplasmic male sterility is an important part of hybrid maize production. The first commercial cytoplasmic male sterile, discovered in Texas, is known as CMS-T. The use of CMS-T, starting in the 1950s, eliminated the need for detasseling. In the early 1970s plants containing CMS-T genetics were susceptible to southern corn leaf blight and suffered from widespread loss of yield. Since then CMS types C and S are used instead.[3] Unfortunately these types are prone to environmentally induced fertility restoration and must be carefully monitored in the field. Environmentally induced, in contrast to genetic, restoration occurs when certain environmental stimuli signal the plant to bypass sterility restrictions and produce pollen anyway..

The systematic sequencing of new plant species in recent years has uncovered the existence of several novel RF genes and their encoded proteins. A unified nomenclature for the RF defines protein families across all plant species and facilitates comparative functional genomics. This nomenclature accommodates functional RF genes and pseudogenes, and offers the flexibility needed to incorporate additional RFs as they become available in future. [4]

References

  1. ^ Gómez-Campo, C. (1999). Biology of Brassica Coenospecies. Elsevier. pp. 186–189. ISBN 9780444502780. 
  2. ^ Schnable PS, RP Wise (1998) The molecular basis of cytoplasmic male sterility. Trends in Plant Science, 3(5): 175-180.
  3. ^ Weider, Christophe Stamp, Peter Christov, Nikolai Husken, Alexandra Foueillassar, Xavier Camp, Karl-Heinz Munsch, Magali (2009) Stability of Cytoplasmic Male Sterility ins Maize under Different Environmental Conditions. Crop Science 49: 77-84.

[4] Kotchoni SO, Jimenez-Lopez JC, Gachomo EW, Seufferheld MJ (2010) A New and Unified Nomenclature for Male Fertility Restorer (RF) Proteins in Higher Plants. PLoS ONE 5(12): e15906

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • cytoplasmic male sterility — cytoplasmic male sterility. = male sterility (см.). (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) …   Молекулярная биология и генетика. Толковый словарь.

  • cytoplasmic male sterility — cytoplasmic male sterility. См. мужская стерильность. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) …   Молекулярная биология и генетика. Толковый словарь.

  • cytoplasmic male sterility — citoplazminis vyriškasis nevaisingumas statusas T sritis augalininkystė apibrėžtis Žiedadulkių negyvybingumas dėl citoplazminių veiksnių, kurie yra paveldėti iš motininio individo, bet pasireiškia tik nesant žiedadulkių gyvybingumą atkuriančių… …   Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

  • cytoplasmic male sterility factor — cytoplasmic male sterility factor. См. фактор цитоплазматической мужской стерильности. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) …   Молекулярная биология и генетика. Толковый словарь.

  • cytoplasmic male sterility — Genetic defect due to faulty functioning of mitochondria in pollen development, preventing the formation of viable pollen. Commonly found or inducible in many plant species and exploited for some F1 hybrid seed programmes …   Glossary of Biotechnology

  • Male-sterilite — Mâle stérilité On parle de stérilité mâle à propos de plantes incapables de se reproduire par autopollinisation, du fait d une stérilité des éléments mâles des fleurs. La stérilité mâle est utilisée par les sélectionneurs pour produire des… …   Wikipédia en Français

  • Mâle-Stérilité — On parle de stérilité mâle à propos de plantes incapables de se reproduire par autopollinisation, du fait d une stérilité des éléments mâles des fleurs. La stérilité mâle est utilisée par les sélectionneurs pour produire des variétés hybrides… …   Wikipédia en Français

  • Mâle-stérilité — On parle de stérilité mâle à propos de plantes incapables de se reproduire par autopollinisation, du fait d une stérilité des éléments mâles des fleurs. La stérilité mâle est utilisée par les sélectionneurs pour produire des variétés hybrides… …   Wikipédia en Français

  • Stérilité mâle — On parle de stérilité mâle à propos de plantes incapables de se reproduire par autopollinisation, du fait d une stérilité des éléments mâles des fleurs. La stérilité mâle est utilisée par les sélectionneurs pour produire des variétés hybrides… …   Wikipédia en Français

  • Drosophila hybrid sterility — The most common species definition in use today is the biological species concept of Ernst Mayr, which defines a species as a group of organisms which can mate and produce viable offspring. Drosophila are one of the most commonly used organisms… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”