Disintegration theorem

Disintegration theorem

In mathematics, the disintegration theorem is a result in measure theory and probability theory. It rigorously defines the idea of a non-trivial "restriction" of a measure to a measure zero subset of the measure space in question. It is related to the existence of conditional probability measures. In a sense, "disintegration" is the opposite process to the construction of a product measure.

Contents

Motivation

Consider the unit square in the Euclidean plane R², S = [0, 1] × [0, 1]. Consider the probability measure μ defined on S by the restriction of two-dimensional Lebesgue measure λ² to S. That is, the probability of an event ES is simply the area of E. We assume E is a measurable subset of S.

Consider a one-dimensional subset of S such as the line segment Lx = {x} × [0, 1]. Lx has μ-measure zero; every subset of Lx is a μ-null set; since the Lebesgue measure space is a complete measure space,

E \subseteq L_{x} \implies \mu (E) = 0.

While true, this is somewhat unsatisfying. It would be nice to say that μ "restricted to" Lx is the one-dimensional Lebesgue measure λ1, rather than the zero measure. The probability of a "two-dimensional" event E could then be obtained as an integral of the one-dimensional probabilities of the vertical "slices" ELx: more formally, if μx denotes one-dimensional Lebesgue measure on Lx, then

\mu (E) = \int_{[0, 1]} \mu_{x} (E \cap L_{x}) \, \mathrm{d} x

for any "nice" ES. The disintegration theorem makes this argument rigorous in the context of measures on metric spaces.

Statement of the theorem

(Hereafter, P(X) will denote the collection of Borel probability measures on a metric space (X, d).)

Let Y and X be two Radon spaces (i.e. separable metric spaces on which every probability measure is a Radon measure). Let μP(Y), let π : YX be a Borel-measurable function, and let νP(X) be the pushforward measure ν = π(μ) = μ ∘ π−1. Then there exists a ν-almost everywhere uniquely determined family of probability measures {μx}xXP(Y) such that

  • the function x \mapsto \mu_{x} is Borel measurable, in the sense that x \mapsto \mu_{x} (B) is a Borel-measurable function for each Borel-measurable set BY;
  • μx "lives on" the fiber π−1(x): for ν-almost all xX,
\mu_{x} \left( Y \setminus \pi^{-1} (x) \right) = 0,
and so μx(E) = μx(Eπ−1(x));
  • for every Borel-measurable function f : Y → [0, +∞],
\int_{Y} f(y) \, \mathrm{d} \mu (y) = \int_{X} \int_{\pi^{-1} (x)} f(y) \, \mathrm{d} \mu_{x} (y) \mathrm{d} \nu (x).
In particular, for any event EY, taking f to be the indicator function of E,
\mu (E) = \int_{X} \mu_{x} \left( E \right) \, \mathrm{d} \nu (x).

[1]

Applications

Product spaces

The original example was a special case of the problem of product spaces, to which the disintegration theorem applies.

When Y is written as a Cartesian product Y = X1 × X2 and πi : YXi is the natural projection, then each fibre π1−1(x1) can be canonically identified with X2 and there exists a Borel family of probability measures \{ \mu_{x_{1}} \}_{x_{1} \in X_{1}} in P(X2) (which is (π1)(μ)-almost everywhere uniquely determined) such that

\mu = \int_{X_{1}} \mu_{x_{1}} \, \mu \left(\pi_1^{-1}(\mathrm d x_1) \right)= \int_{X_{1}} \mu_{x_{1}} \, \mathrm{d} (\pi_{1})_{*} (\mu) (x_{1}),

which is in particular

\int_{X_1\times X_2} f(x_1,x_2)\, \mu(\mathrm d x_1,\mathrm d x_2) = \int_{X_1}\left( \int_{X_2} f(x_1,x_2) \mu(\mathrm d x_2|x_1) \right) \mu\left( \pi_1^{-1}(\mathrm{d} x_{1})\right)

and

\mu(A \times B) = \int_A \mu\left(B|x_1\right) \, \mu\left( \pi_1^{-1}(\mathrm{d} x_{1})\right).

The relation to conditional expectation is given by the identities

\operatorname E(f|\pi_1)(x_1)= \int_{X_2} f(x_1,x_2) \mu(\mathrm d x_2|x_1),
\mu(A\times B|\pi_1)(x_1)= 1_A(x_1) \cdot \mu(B| x_1).

Vector calculus

The disintegration theorem can also be seen as justifying the use of a "restricted" measure in vector calculus. For instance, in Stokes' theorem as applied to a vector field flowing through a compact surface Σ ⊂ R³, it is implicit that the "correct" measure on Σ is the disintegration of three-dimensional Lebesgue measure λ³ on Σ, and that the disintegration of this measure on ∂Σ is the same as the disintegration of λ³ on ∂Σ. [2]

Conditional distributions

The disintegration theorem can be applied to give a rigorous treatment of conditioning probability distributions in statistics, while avoiding purely abstract formulations of conditional probability. [3]

See also

References

  1. ^ Dellacherie, C. & Meyer, P.-A. (1978). Probabilities and potential. North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam. 
  2. ^ Ambrosio, L., Gigli, N. & Savaré, G. (2005). Gradient Flows in Metric Spaces and in the Space of Probability Measures. ETH Zürich, Birkhäuser Verlag, Basel. ISBN 3-7643-2428-7. 
  3. ^ Chang, J.T.; Pollard, D. (1997). "Conditioning as disintegration". STATISTICA NEERLANDICA 51 (3). http://www.stat.yale.edu/~jtc5/papers/ConditioningAsDisintegration.pdf. 

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Disintegration — or disintegrate may refer to: Contents 1 Music 2 Science 3 Other 4 See also Music Disintegrate (albu …   Wikipedia

  • Disintegration (disambiguation) — Disintegration is the process by which an object breaks down or loses cohesion. Disintegration or Disintegrate may also refer to: * Disintegration (song) , a song by Jimmy Eat World from their 2005 EP Stay on My Side Tonight * Disintegrate… …   Wikipedia

  • List of mathematics articles (D) — NOTOC D D distribution D module D D Agostino s K squared test D Alembert Euler condition D Alembert operator D Alembert s formula D Alembert s paradox D Alembert s principle Dagger category Dagger compact category Dagger symmetric monoidal… …   Wikipedia

  • Conditioning (probability) — Beliefs depend on the available information. This idea is formalized in probability theory by conditioning. Conditional probabilities, conditional expectations and conditional distributions are treated on three levels: discrete probabilities,… …   Wikipedia

  • Conditional expectation — In probability theory, a conditional expectation (also known as conditional expected value or conditional mean) is the expected value of a real random variable with respect to a conditional probability distribution. The concept of conditional… …   Wikipedia

  • Multivariate normal distribution — MVN redirects here. For the airport with that IATA code, see Mount Vernon Airport. Probability density function Many samples from a multivariate (bivariate) Gaussian distribution centered at (1,3) with a standard deviation of 3 in roughly the… …   Wikipedia

  • Conditional mutual information — In probability theory, and in particular, information theory, the conditional mutual information is, in its most basic form, the expected value of the mutual information of two random variables given the value of a third. Contents 1 Definition 2… …   Wikipedia

  • Joint probability distribution — In the study of probability, given two random variables X and Y that are defined on the same probability space, the joint distribution for X and Y defines the probability of events defined in terms of both X and Y. In the case of only two random… …   Wikipedia

  • Mesure produit — En mathématiques et plus précisément en théorie de la mesure, étant donnés deux espaces mesurés et on définit une mesure produit μ1×μ2 sur l espace mesurable . La tribu produit est la …   Wikipédia en Français

  • Mass–energy equivalence — E=MC2 redirects here. For other uses, see E=MC2 (disambiguation). 4 meter tall sculpture of Einstein s 1905 E = mc2 formula at the 2006 Walk of Ideas, Berlin, Germany In physics, mass–energy equivalence is the concept that the …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”