- Network bridge
A network bridge connects multiple
network segment s at thedata link layer (layer 2) of theOSI model , and the term layer 2 switch is often used interchangeably with bridge. Bridges are similar torepeater s ornetwork hub s, devices that connect network segments at thephysical layer ; however, a bridge works by using bridging where traffic from one network is managed rather than simply rebroadcast to adjacent network segments. In Ethernet networks, the term "bridge" formally means a device that behaves according to theIEEE 802.1D standard—this is most often referred to as anetwork switch in marketing literature.Since bridging takes place at the data link layer of the
OSI model , a bridge processes the information from each frame of data it receives. In anEthernet frame, this provides theMAC address of the frame's source and destination. Bridges use two methods to resolve the network segment that a MAC address belongs to.* Transparent bridging – This method uses a forwarding database to send frames across network segments. The forwarding database is initially empty and entries in the database are built as the bridge receives frames. If an address entry is not found in the forwarding database, the frame is rebroadcast to all ports of the bridge, forwarding the frame to all segments except the source address. By means of these broadcast frames, the destination network will respond and a route will be created. Along with recording the network segment to which a particular frame is to be sent, bridges may also record a bandwidth metric to avoid looping when multiple paths are available. Devices that have this transparent bridging functionality are also known as "adaptive bridges". They are primarily found in Ethernet networks.
* Source route bridging – With source route bridging two frame types are used in order to find the route to the destination network segment. Single-Route (SR) frames comprise most of the network traffic and have set destinations, while All-Route(AR) frames are used to find routes. Bridges send AR frames by broadcasting on all network branches; each step of the followed route is registered by the bridge performing it. Each frame has a maximum hop count, which is determined to be greater than the diameter of the network graph, and is decremented by each bridge. Frames are dropped when this hop count reaches zero, to avoid indefinite looping of AR frames. The first AR frame which reaches its destination is considered to have followed the best route, and the route can be used for subsequent SR frames; the other AR frames are discarded. This method of locating a destination network can allow for indirect load balancing among multiple bridges connecting two networks. The more a bridge is loaded, the less likely it is to take part in the route finding process for a new destination as it will be slow to forward packets. A new AR packet will find a different route over a less busy path if one exists. This method is very different from transparent bridge usage, where redundant bridges will be inactivated; however, more overhead is introduced to find routes, and space is wasted to store them in frames. A switch with a faster backplane can be just as good for performance, if not for fault tolerance. They are primarily found in Token Ring networks.
Advantages of network bridges
* Self configuring
* Primitive bridges are often inexpensive
* Reduce size of collision domain bymicrosegmentation in non switched networks
* Transparent to protocols above the MAC layer
* Allows the introduction of management - performance information and access control
* LANs interconnected are separate and physical constraints such as number of stations, repeaters and segment length don't applyDisadvantages of network bridges
* Does not limit the scope of broadcasts
* Does not scale to extremely large networks
* Buffering introduces store and forward delays - on average traffic destined for bridge will be related to the number of stations on the rest of the LAN
* Bridging of different MAC protocols introduces errors
* Because bridges do more than repeaters by viewing MAC addresses, the extra processing makes them slower than repeaters
* Bridges are more expensive than repeatersBridging versus routing
Bridging and
Routing are both ways of performing data control, but work through different methods. Bridging takes place at (Data-Link Layer) while Routing takes place at the (Network Layer). This difference means that a bridge directs frames according to hardware assignedMAC address es while a router makes its decisions according to arbitrarily assignedIP Address es. As a result of this, bridges are not concerned with and are unable to distinguish networks whilerouters can.When designing a network, you can choose to put multiple segments into one bridged network or to divide it into different networks interconnected by routers. If a host is physically moved from one network area to another in a routed network, it has to get a new IP address; if this system is moved within a bridged network, it doesn't have to reconfigure anything.
pecific uses of the term "bridge"
Documentation on
Linux bridging can be found in the [http://www.linux-foundation.org/en/Net:Bridge Linux networking wiki] . Linux bridging allows filtering and routing.Certain versions of Windows (including XP and Vista) allow for creating a "Network Bridge" - a network component that aggregates two or more "Network Connections" and establishes a bridging environment between them. Windows does not support creating more than one network bridge per system.
Filtering Database
To translate between two segments types, a bridge reads a frame's destination
MAC address and decides to either forward or filter. If the bridge determines that the destination node is on another segment on the network, it forwards it (retransmits) the packet to that segment. If the destination address belongs to the same segment as the source address, the bridge filters (discards) the frame. As nodes transmit data through the bridge, the bridge establishes a filtering database (also known as a forwarding table) of known MAC addresses and their locations on the network. The bridge uses its filtering database to determine whether a packet should be forwarded or filtered.ee also
*
Network hub
*Wireless bridge
*Router
*InterLnk
*null-modem
*Spanning Tree Protocol
*Instrument bridge
*Bridging (networking) External links
* [http://www.cisco.com/en/US/docs/internetworking/technology/handbook/Bridging-Basics.html Bridging]
Wikimedia Foundation. 2010.