S-matrix

S-matrix

:"Scattering matrix redirects here. For the meaning in linear electrical networks, see scattering parameters."

In physics, the scattering matrix (S-matrix) relates the initial state and the final state for an interaction of particles. It is used in quantum mechanics, scattering theory and quantum field theory.

More formally, the S-matrix is defined as the unitary matrix connecting asymptotic particle states in the Hilbert space of physical states (scattering channels). While the S-matrix may be defined for any background (spacetime) that is asymptotically solvable and has no horizons, it has a simple form in the case of the Minkowski space. In this special case, the Hilbert space is a space of irreducible unitary representations of the inhomogeneous Lorentz group; the S-matrix is the evolution operator between time equal to minus infinity, and time equal to plus infinity. It can be shown that if a quantum field theory in Minkowski space has a mass gap, the state in the asymptotic past and in the asymptotic future are both described by Fock spaces.

Explanation

Use of S-matrices

The S-matrix is closely related to the transition probability amplitude in quantum mechanics and to cross sections of various interactions; the elements (individual numerical entries) in the S-matrix are known as scattering amplitudes. Poles of the S-matrix in the complex-energy plane are identified with bound states, virtual states or resonances. Branch cuts of the S-matrix in the complex-energy plane are associated to the opening of a scattering channel.

In the Hamiltonian approach to quantum field theory, the S-matrix may be calculated as a time-ordered exponential of the integrated Hamiltonian in the Dirac picture; it may be also expressed using Feynman's path integrals. In both cases, the perturbative calculation of the S-matrix leads to Feynman diagrams.

In scattering theory, the S-matrix is an operator mapping free particle "in-states" to free particle "out-states" (scattering channels) in the Heisenberg picture. This is very useful because we cannot describe exactly the interaction (at least, the most interesting ones).

Mathematical definition

In Dirac notation, we define left |0 ight angle as the vacuum quantum state. If a^{dagger}(k) is a creation operator, its hermitian conjugate (destruction or annihilation operator) acts on the vacuum as follows:

:a(k)left |0 ight angle = 0

Now, we define two kinds of creation/destruction operators, acting on different Hilbert spaces (IN space "i", OUT space "f"), a_i^dagger (k) and a_f^dagger (k).

So now

:mathcal H_mathrm{IN} = operatorname{span}{ left| I, k_1ldots k_n ight angle = a_i^dagger (k_1)cdots a_i^dagger (k_n)left| I, 0 ight angle},:mathcal H_mathrm{OUT} = operatorname{span}{ left| F, p_1ldots p_n ight angle = a_f^dagger (p_1)cdots a_f^dagger (p_n)left| F, 0 ight angle}.

It is possible to prove that left| I, 0 ight angle and left| F, 0 ight angle are both invariant under translation and that the states left| I, k_1ldots k_n ight angle and left| F, p_1ldots p_n ight angle are eigenstates of the momentum operator mathcal P^mu.

In the Heisenberg picture the states are time-independent, so we can expand initial states on a basis of final states (or vice versa) as follows:

:left| I, k_1ldots k_n ight angle = C_0 + sum_{m=1}^infty int{d^4p_1ldots d^4p_mC_m(p_1ldots p_m)left| F, p_1ldots p_n ight angle} Where left|C_m ight|^2 is the probability that the interaction transforms left| I, k_1ldots k_n ight angle into left| F, p_1ldots p_n ight angle

According to Wigner's theorem, S must be a unitary operator such that left langle I,eta ight |Sleft | I,alpha ight angle = S_{alphaeta} = left langle F,eta | I,alpha ight angle. Moreover, S leaves the vacuum state invariant and transforms IN-space fields in OUT-space fields:

:Sleft|0 ight angle = left|0 ight angle

:phi_f=S^{-1}phi_f S

If S describes an interaction correctly, these properties must be also true:

If the system is made up with a single particle in momentum eigenstate left| k ight angle, then Sleft| k ight angle=left| k ight angle

The S-matrix element must be nonzero if and only if momentum is conserved.

-matrix and evolution operator "U"

:aleft(k,t ight)=U^{-1}(t)a_ileft(k ight)Uleft( t ight)

:phi_f=U^{-1}(infty)phi_i U(infty)=S^{-1}phi_i S

Therefore S=e^{ialpha}U(infty) where

:e^{ialpha}=leftlangle 0|U(infty)|0 ight angle^{-1}

because

:Sleft|0 ight angle = left|0 ight angle.

Substituting the explicit expression for "U" we obtain:

:S=frac{1}{leftlangle 0|U(infty)|0 ight angle}mathcal T e^{-iint{d au V_i( au)

By inspection it can be seen that this formula is not explicitly covariant.

ee also

*Feynman diagram
*LSZ reduction formula
*Wick's theorem

Bibliography


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Matrix of Leadership — Plot element from the Transformers franchise Publisher Marvel Comics (introduction only) First appearance Transformers issue 10 (November 1985) Created by Bob Budiansky …   Wikipedia

  • Matrix — Données clés Titre original The Matrix …   Wikipédia en Français

  • Matrix (monde imaginaire) — Matrix Matrix Titre original The Matrix Titre québécois La Matrice Réalisation Andy et Larry Wachowski Acteurs principaux …   Wikipédia en Français

  • Matrix (univers de fiction) — Matrix Matrix Titre original The Matrix Titre québécois La Matrice Réalisation Andy et Larry Wachowski Acteurs principaux …   Wikipédia en Français

  • Matrix decoder — is an audio technology where a finite number of discrete audio channels (e.g., 2) are decoded into a larger number of channels on play back (e.g., 5). The channels are generally, but not always, arranged for transmission or recording by an… …   Wikipedia

  • Matrix (trilogía) — Saltar a navegación, búsqueda The Matrix trilogy Título La trilogía Matrix Distintos póster de la película The Matrix Revolutions se toman el centro de …   Wikipedia Español

  • Matrix Partners — Type Private ownership Industry Private equity Predecessor Hellman Ferri Investment Associates (1977 to 1982) …   Wikipedia

  • Matrix Reloaded — Données clés Titre original The Matrix Reloaded Réalisation Andy et Larry Wachowski Scénario Andy et Larry Wachowski Acteurs principaux Keanu Reeves Laurence Fishburne Carrie Anne Moss …   Wikipédia en Français

  • Matrix Revolutions — Données clés Titre original The Matrix Revolutions Réalisation Andy et Larry Wachowski Scénario Andy et Larry Wachowski Acteurs principaux Keanu Reeves Laurence Fishburne Carrie Anne Moss …   Wikipédia en Français

  • Matrix metallopeptidase 13 — (collagenase 3) PDB rendering based on 1cxv …   Wikipedia

  • Matrix — ([ˈmaːtrɪks], [ˈmaːtriːks]; lat. matrix „Gebärmutter“, eigentl. „Muttertier“; Mehrzahl je nach Bedeutung Matrizes [maˈtriːʦeːs] oder eingedeutscht Matrizen [maˈtrɪʦən], [maˈtriːʦən]) bezeichnet: eine Anordnung in Form einer Tabelle Matri …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”