Hartley transform

Hartley transform

In mathematics, the Hartley transform is an integral transform closely related to the Fourier transform, but which transforms real-valued functions to real-valued functions. It was proposed as an alternative to the Fourier transform by R. V. L. Hartley in 1942, and is one of many known Fourier-related transforms. Compared to the Fourier transform, the Hartley transform has the advantages of transforming real functions to real functions (as opposed to requiring complex numbers) and of being its own inverse.

The discrete version of the transform, the Discrete Hartley transform, was introduced by R. N. Bracewell in 1983.

The two-dimensional Hartley transform can be computed by an analog optical process similar to an optical Fourier transform, with the proposed advantage that only its amplitude and sign need to be determined rather than its complex phase (Villasenor, 1994). However, optical Hartley transforms do not seem to have seen widespread use.

Contents

Definition

The Hartley transform of a function f(t) is defined by:


H(\omega) = \left\{\mathcal{H}f\right\}(\omega) =  \frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty
f(t) \, \mbox{cas}(\omega t) \mathrm{d}t,

where ω can in applications be an angular frequency and


\mbox{cas}(t) = \cos(t) + \sin(t) = \sqrt{2} \sin (t+\pi /4) = \sqrt{2} \cos (t-\pi /4)\,

is the cosine-and-sine or Hartley kernel. In engineering terms, this transform takes a signal (function) from the time-domain to the Hartley spectral domain (frequency domain).

Inverse transform

The Hartley transform has the convenient property of being its own inverse (an involution):

f = \{\mathcal{H} \{\mathcal{H}f \}\}

Conventions

The above is in accord with Hartley's original definition, but (as with the Fourier transform) various minor details are matters of convention and can be changed without altering the essential properties:

  • Instead of using the same transform for forward and inverse, one can remove the {1}/{\sqrt{2\pi}} from the forward transform and use 1 / 2π for the inverse—or, indeed, any pair of normalizations whose product is 1 / 2π. (Such asymmetrical normalizations are sometimes found in both purely mathematical and engineering contexts.)
  • One can also use 2πνt instead of ωt (i.e., frequency instead of angular frequency), in which case the {1}/{\sqrt{2\pi}} coefficient is omitted entirely.
  • One can use cos−sin instead of cos+sin as the kernel.

Relation to Fourier transform

This transform differs from the classic Fourier transform F(\omega) = \mathcal{F} \{ f(t) \}(\omega) in the choice of the kernel. In the Fourier transform, we have the exponential kernel: \exp\left({-i\omega t}\right) = \cos(\omega t) - i \sin(\omega t), where i is the imaginary unit.

The two transforms are closely related, however, and the Fourier transform (assuming it uses the same 1/\sqrt{2\pi} normalization convention) can be computed from the Hartley transform via:

F(\omega) = \frac{H(\omega) + H(-\omega)}{2} - i \frac{H(\omega) - H(-\omega)}{2}

That is, the real and imaginary parts of the Fourier transform are simply given by the even and odd parts of the Hartley transform, respectively.

Conversely, for real-valued functions f(t), the Hartley transform is given from the Fourier transform's real and imaginary parts:

\{ \mathcal{H} f \} = \Re \{ \mathcal{F}f \} - \Im \{ \mathcal{F}f \} = \Re \{ \mathcal{F}f \cdot (1+i) \}

where \Re and \Im denote the real and imaginary parts of the complex Fourier transform.

Properties

The Hartley transform is a real linear operator, and is symmetric (and Hermitian). From the symmetric and self-inverse properties, it follows that the transform is a unitary operator (indeed, orthogonal).

There is also an analogue of the convolution theorem for the Hartley transform. If two functions x(t) and y(t) have Hartley transforms X(ω) and Y(ω), respectively, then their convolution z(t) = x * y has the Hartley transform:

Z(\omega) = \{ \mathcal{H} (x * y) \} = \sqrt{2\pi} \left( X(\omega) \left[ Y(\omega) + Y(-\omega) \right]
                         + X(-\omega) \left[ Y(\omega) - Y(-\omega) \right] \right) / 2

Similar to the Fourier transform, the Hartley transform of an even/odd function is even/odd, respectively.

cas

The properties of the cas function follow directly from trigonometry, and its definition as a phase-shifted trigonometric function \mbox{cas}(t)=\sqrt{2} \sin (t+\pi /4). For example, it has an angle-addition identity of:


2 \mbox{cas} (a+b) = \mbox{cas}(a) \mbox{cas}(b) + \mbox{cas}(-a) \mbox{cas}(b) + \mbox{cas}(a) \mbox{cas}(-b) - \mbox{cas}(-a) \mbox{cas}(-b) \,

Additionally:

 
\mbox{cas} (a+b) = \cos (a) \mbox{cas} (b) + \sin (a) \mbox{cas} (-b) = \cos (b) \mbox{cas} (a) + \sin (b) \mbox{cas}(-a) \,

and its derivative is given by:


\mbox{cas}'(a) = \frac{\mbox{d}}{\mbox{d}a} \mbox{cas} (a) = \cos (a) - \sin (a) = \mbox{cas}(-a)

 \mbox{cas}(t)=\sqrt{1+\sin 2t}

References

  • Bracewell, R. N., The Fourier Transform and Its Applications (McGraw-Hill, 1965, 2nd ed. 1978, revised 1986) (also translated into Japanese and Polish)
  • Bracewell, R. N., The Hartley Transform (Oxford University Press, 1986) (also translated into German and Russian)

Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Discrete Hartley transform — A discrete Hartley transform (DHT) is a Fourier related transform of discrete, periodic data similar to the discrete Fourier transform (DFT), with analogous applications in signal processing and related fields. Its main distinction from the DFT… …   Wikipedia

  • Hartley-Transformation — Die Hartley Transformation, abgekürzt HT, ist in der Funktionalanalysis, einem Teilgebiet der Mathematik, eine lineare Integraltransformation mit Bezug zur Fourier Transformation und wie diese eine Frequenztransformation. Im Gegensatz zur… …   Deutsch Wikipedia

  • Arithmetic complexity of the discrete Fourier transform — See Fast Fourier transform#Bounds on complexity and operation counts for a general summary of this issue.Bounds on the multiplicative complexity of FFTIn his PhD thesis in 1987 [1] , Michael Heidman focus on the arithmetic theory of complexity… …   Wikipedia

  • Fast Fourier transform — A fast Fourier transform (FFT) is an efficient algorithm to compute the discrete Fourier transform (DFT) and its inverse. There are many distinct FFT algorithms involving a wide range of mathematics, from simple complex number arithmetic to group …   Wikipedia

  • Ralph Hartley — Infobox Scientist name = Ralph Hartley caption = birth date = birth date|1888|11|30 birth place = Spruce, Nevada death date = death date and age|1970|5|1|1888|11|30 death place = New Jersey residence = United States nationality = American field …   Wikipedia

  • Fourier transform — Fourier transforms Continuous Fourier transform Fourier series Discrete Fourier transform Discrete time Fourier transform Related transforms The Fourier transform is a mathematical operation that decomposes a function into its constituent… …   Wikipedia

  • Discrete Fourier transform — Fourier transforms Continuous Fourier transform Fourier series Discrete Fourier transform Discrete time Fourier transform Related transforms In mathematics, the discrete Fourier transform (DFT) is a specific kind of discrete transform, used in… …   Wikipedia

  • Fast Fourier Transform — Transformée de Fourier rapide La transformée de Fourier rapide (sigle anglais : FFT ou Fast Fourier Transform) est un algorithme de calcul de la transformée de Fourier discrète (TFD). Sa complexité varie en avec le nombre de points n, alors… …   Wikipédia en Français

  • List of transforms — This is a list of transforms in mathematics.Integral transforms*Abel transform *Fourier transform **Short time Fourier transform *Hankel transform *Hartley transform *Hilbert transform **Hilbert Schmidt integral operator *Laplace transform… …   Wikipedia

  • List of Fourier-related transforms — This is a list of linear transformations of functions related to Fourier analysis. Such transformations map a function to a set of coefficients of basis functions, where the basis functions are sinusoidal and are therefore strongly localized in… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”