Nowhere dense set

Nowhere dense set

A subset A of a topological space X is nowhere dense in X if and only if the interior of the closure of A is empty. The order of operations is important. For example, the set of rational numbers, as a subset of R has the property that the closure of the interior is empty, but it is not nowhere dense; in fact it is dense in R.

The surrounding space matters: a set A may be nowhere dense when considered as a subspace of a topological space X but not when considered as a subspace of another topological space Y. A nowhere dense set is always dense in itself.

Every subset of a nowhere dense set is nowhere dense, and the union of finitely many nowhere dense sets is nowhere dense. That is, the nowhere dense sets form an ideal of sets, a suitable notion of negligible set. The union of countably many nowhere dense sets, however, need not be nowhere dense. (Thus, the nowhere dense sets need not form a sigma-ideal.) Instead, such a union is called a meagre set or a set of first category. The concept is important to formulate the Baire category theorem.

Contents

Open and closed

  • A nowhere dense set need not be closed (for instance, the set \{1,\frac{1}{2},\frac{1}{3},\dots\} is nowhere dense in the reals), but is properly contained in a nowhere dense closed set, namely its closure (which would add 0 to the set). Indeed, a set is nowhere dense if and only if its closure is nowhere dense.
  • The complement of a closed nowhere dense set is a dense open set, and thus the complement of a nowhere dense set is a set with dense interior.
  • The boundary of an open set is closed and nowhere dense.
  • Every closed nowhere dense set is the boundary of an open set.

Nowhere dense sets with positive measure

A nowhere dense set is not necessarily negligible in every sense. For example, if X is the unit interval [0,1], not only is it possible to have a dense set of Lebesgue measure zero (such as the set of rationals), but it is also possible to have a nowhere dense set with positive measure.

For one example (a variant of the Cantor set), remove from [0,1] all dyadic fractions, i.e. fractions of the form a/2n in lowest terms for positive integers a and n, and the intervals around them: [a/2n − 1/22n+1, a/2n + 1/22n+1]. Since for each n this removes intervals adding up to at most 1/2n+1, the nowhere dense set remaining after all such intervals have been removed, has measure of at least 1/2 (in fact just over 0.535... because of overlaps) and so in a sense represents the majority of the ambient space [0,1].

Generalizing this method, one can construct in the unit interval nowhere dense sets of any measure less than 1.

See also

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Dense set — In topology and related areas of mathematics, a subset A of a topological space X is called dense (in X) if any point x in X belongs to A or is a limit point of A.[1] Informally, for every point in X, the point is either in A or arbitrarily close …   Wikipedia

  • nowhere-dense — /noh hwair dens , wair /, adj. Math. (of a set in a topological space) having a closure that contains no open set with any points in it; nondense. * * * …   Universalium

  • nowhere-dense — /noh hwair dens , wair /, adj. Math. (of a set in a topological space) having a closure that contains no open set with any points in it; nondense …   Useful english dictionary

  • Dense-in-itself — In mathematics, a subset A of a topological space is said to be dense in itself if A contains no isolated points. Every dense in itself closed set is perfect. Conversely, every perfect set is dense in itself. A simple example of a set which is… …   Wikipedia

  • Meagre set — In the mathematical fields of general topology and descriptive set theory, a meagre set (also called a meager set or a set of first category) is a set that, considered as a subset of a (usually larger) topological space, is in a precise sense… …   Wikipedia

  • List of exceptional set concepts — This is a list of exceptional set concepts. In mathematics, and in particular in mathematical analysis, it is very useful to be able to characterise subsets of a given set X as small , in some definite sense, or large if their complement in X is… …   Wikipedia

  • Nowhere continuous function — In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain. If f is a function from real numbers to real numbers, then f(x) is nowhere… …   Wikipedia

  • Cantor set — In mathematics, the Cantor set, introduced by German mathematician Georg Cantor in 1883 [Georg Cantor (1883) Über unendliche, lineare Punktmannigfaltigkeiten V [On infinite, linear point manifolds (sets)] , Mathematische Annalen , vol. 21, pages… …   Wikipedia

  • Negligible set — See also: Generic property In mathematics, a negligible set is a set that is small enough that it can be ignored for some purpose. As common examples, finite sets can be ignored when studying the limit of a sequence, and null sets can be ignored… …   Wikipedia

  • Porous set — In mathematics, a porosity is a concept in the study of metric spaces. Like the concepts of meagre and measure zero sets, porosity is a notion of a set being somehow sparse or lacking bulk ; however, porosity is not equivalent to either of the… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”