Taste (or, more formally, gustation) is a form of direct chemoreception and is one of the traditional five senses. It refers to the ability to detect the flavor of substances such as food and poisons. In humans and many other vertebrate animals the sense of taste partners with the less direct sense of smell, in the brain's perception of flavor. In the West, experts traditionally identified four taste sensations: sweet, salty, sour, and bitter. Eastern experts traditionally identified a fifth, called umami (savory). More recently, psychophysicists and neuroscientists have suggested other taste categories (umami and fatty acid taste most prominently, as well as the sensation of metallic and water tastes, although the latter is commonly disregarded due to the phenomenon of taste adaptation.Fact|date=May 2008)Taste is a sensory function of the central nervous system. The receptor cells for taste in humans are found on the surface of the tongue, along the soft palate, and in the epithelium of the pharynx and epiglottis.

Basic taste

Psychophysicists have long suggested the existence of four taste 'primaries', referred to as the basic tastes: sweetness, bitterness, sourness, and saltiness. Umami is now accepted as the fifth basic taste, exemplified by the non-salty sensations evoked by some free amino acids such as monosodium glutamate. [ cite journal | last=Ikeda | first=Kikunae | title=New Seasonings [japan.] | journal=Journal of the Chemical Society of Tokyo |year=1909 | volume=30 | pages= 820–836] [ cite journal | last=Ikeda | first=Kikunae | title=New Seasonings | journal=Chemical Senses |year=2002 | volume=27 | issue=9 | pages= 847–849 |url=http://chemse.oxfordjournals.org/cgi/reprint/27/9/847|format=PDF|accessdate=2007-12-30 | doi=10.1093/chemse/27.9.847 | pmid=12438213] [cite journal |author=Nelson G, Chandrashekar J, Hoon MA, "et al" |title=An amino-acid taste receptor |journal=Nature |volume=416 |issue=6877 |pages=199–202 |year=2002 |pmid=11894099 |doi=10.1038/nature726]

Other possible categories have been suggested, such as a taste exemplified by certain fatty acids such as linoleic acid. [ [http://ajpcell.physiology.org/cgi/content/abstract/272/4/C1203 Fatty acid modulation of K+ channels in taste receptor cells: gustatory cues for dietary fat - Gilbertson et al. 272 (4): C1203 - AJP - Cell Physiology ] ] [http://dx.doi.org/10.1016/j.physbeh.2005.12.004] [http://dx.doi.org/10.1016/j.physbeh.2005.08.058] Some researchers still argue against the notion of primaries at all and instead favor a continuum of percepts [ cite journal | last=Schiffman | first=Susan | title=Taste quality and neural coding: implications from psychophysics and neurophysiology | journal=Physiology and Behavior |year=2000 | volume=69 | pages= 147–159 | doi=10.1016/S0031-9384(00)00198-0] [ cite journal | last=Erickson | first=Robert | title=Classification of taste responses in brain stem: membership in fuzzy sets | journal=Journal of Neurophysiology |year=1994 | volume=71 | issue=6 | pages= 2139–50 ] [ cite journal | last=Erickson | first=Robert | title=Studies on the perception of taste: do primaries exist? | journal=Physiology and Behavior |year=1982 | volume=28 | issue=1 | pages= 57–62 | doi=10.1016/0031-9384(82)90102-0 ] , similar to color vision.

All of these taste sensations arise from all regions of the oral cavity, despite the common misconception of a "taste map" of sensitivity to different tastes thought to correspond to specific areas of the tongue. [ [http://www.med-rz.uni-sb.de/med_fak/physiol1/LDM/chemotopic_1.htm chemotopic organization 1 ] ] This myth is generally attributed to the mis-translation of a German text, and perpetuated in North American schools since the early twentieth century [ cite journal | author=Lindemann, Bernd| title=Receptor seeks ligand: On the way to cloning the molecular receptors for sweet and bitter taste | journal=Nature Medicine| year=1999 | volume=5 | issue=4 | pages= 381 | doi = 10.1038/7377 ] . Very slight regional differences in sensitivity to compounds exist, though these regional differences are subtle and do not conform exactly to the mythical tongue map. Individual taste buds (which contain approximately 100 taste receptor cells), in fact, typically respond to compounds evoking each of the five basic tastes.

The "basic tastes" are those commonly recognized types of taste sensed by humans. Humans receive tastes through sensory organs called "taste buds" or "gustatory calyculi", concentrated on the upper surface of the tongue, but a few are also found on the roof of one's mouth, furthering the taste sensations we can receive. Scientists describe five basic tastes: bitter, salty, sour, sweet, and umami (described as savory, meaty, or brothy). The basic tastes are only one component that contributes to the sensation of food in the mouth—other factors include the food's smell, detected by the olfactory epithelium of the nose, its texture, detected by mechanoreceptors, and its temperature, detected by thermoreceptors. Taste and smell are subsumed under the term "flavor".


In Western culture, the concept of basic tastes can be traced back at least to Aristotle, who cited "sweet" and "bitter", with "succulent", "salt", "pungent", "harsh", "puckery", and "sour" as elaborations of those two basics. The ancient Chinese Five Elements philosophy lists slightly different five basic tastes: bitter, salty, sour, sweet, and spicy. Japanese and Indian cultures each add their own sixth taste to the basic five.

For many years, books on the physiology of human taste contained diagrams of the tongue showing levels of sensitivity to different tastes in different regions. In fact, taste qualities are found in all areas of the tongue, in contrast with the popular view that different tastes map to different areas of the tongue. [Huang A. L., et al. cite web | title="The cells and logic for mammalian sour taste detection" (no free access)| url=http://www.nature.com/nature/journal/v442/n7105/abs/nature05084.html Nature, 442. 934 - 938 (2006).] [cite web | author = Scenta | title = "How sour taste buds grow" | url = http://www.scenta.co.uk/Home/1061938/how-sour-taste-buds-grow.htm August 25, 2006.]

Recent discoveries

The receptors for all known basic tastes have been identified. The receptors for sour and salty are ion channels while the receptors for sweet, bitter, and umami belong to the class of G protein coupled receptors.Fact|date=May 2008

In November 2005, a team of French researchers experimenting on rodents claimed to have evidence for a sixth taste, for fatty substances. [ cite journal | last=Laugerette | first=Fabienne | coauthors= Patricia Passilly-Degrace, Bruno Patris, Isabelle Niot, Maria Febbraio, Jean-Pierre Montmayeur, Philippe Besnard | title=CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions | journal=The Journal of Clinical Investigation |month=November | year=2005 | volume=115 | issue=11| pages= 3177–3184|url=http://www.jci.org/cgi/reprint/115/11/3177.pdf|format=PDF|accessdate=2007-12-28 | doi=10.1172/JCI25299] It is speculated that humans may also have the same receptors. [ cite journal | last=Abumrad | first=Nada A. | title=CD36 may determine our desire for dietary fats | journal=The Journal of Clinical Investigation |month=November | year=2005 | volume=115 | issue=11|pages= 2965–2967|url=http://www.jci.org/cgi/reprint/115/11/2965.pdf|format=PDF|accessdate=2007-12-28 | doi=10.1172/JCI26955] Fat has occasionally been raised as a possible basic taste in the past (Bravo 1592, Linnaeus 1751) but later classifications abandoned fat as a separate taste (Haller 1751 and 1763). [ cite book | last=Boring |first=Edwin G. | title=Sensation and Perception in the History of Experimental Psychology | publisher=Appleton Century Crofts |year=1942 | pages= p. 453]

Five basic tastes

For a long period, it has been commonly accepted that there are a finite number of "basic tastes" by which all foods and tastes can be grouped. Just like with primary colors, these "basic tastes" only apply to the human perception, ie. the different sorts of tastes our tongue can identify. Up until the 2000s, this was considered to be a group of four basic tastes. More recently, a fifth taste, Umami, was added by a large number of authorities in this field. [cite journal | last=Ikeda | first=Kikunae | title=New Seasonings | journal=Chemical Senses | year= 2002 | volume=27 | issue=9 | pages= 847–849 |url=http://chemse.oxfordjournals.org/cgi/reprint/27/9/847|format=PDF|accessdate=2007-12-30 | doi=10.1093/chemse/27.9.847 | pmid=12438213. Acceptence of this basic taste came later, varying from region to region. see further: Umami]


The bitter taste is perceived by many to be unpleasant, sharp, or disagreeable. Common bitter foods and beverages include coffee, unsweetened chocolate, bitter melon, beer, bitters, olives, citrus peel, many plants in the Brassicaceae family, dandelion greens and escarole. Quinine is also known for its bitter taste and is found in tonic water.The most bitter substance known is the synthetic chemical denatonium. It is used as an aversive agent that is added to toxic substances to prevent accidental ingestion. This was discovered in 1958 during research on lignocaine, a local anesthetic, by Macfarlan Smith of Edinburgh, Scotland.

Research has shown that TAS2Rs (taste receptors, type 2, also known as T2Rs) such as TAS2R38 coupled to the G protein gustducin are responsible for the human ability to taste bitter substances. They are identified not only by their ability to taste for certain "bitter" ligands, but also by the morphology of the receptor itself (surface bound, monomeric). [ cite journal | last=Lindemann | first=Bernd | title=Receptors and transduction in taste| journal=Nature |date=13 September 2001 | volume=413 |pages= 219–225|url=http://www.nature.com/nature/journal/v413/n6852/pdf/413219a0.pdf|format=PDF|accessdate=2007-12-30 | doi=10.1038/35093032] Researchers use two synthetic substances, phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP) to study the genetics of bitter perception. These two substances taste bitter to some people, but are virtually tasteless to others. Among the tasters, some are so-called "supertasters" to whom PTC and PROP are extremely bitter. This genetic variation in the ability to taste a substance has been a source of great interest to those who study genetics. In addition, it is of interest to those who study evolution since PTC-tasting is associated with the ability to taste numerous natural bitter compounds, a large number of which are known to be toxic.


Saltiness is a taste produced primarily by the presence of sodium ions. Other ions of the alkali metals group also taste salty. However the further from sodium the less salty is the sensation. The size of lithium and potassium ions most closely resemble those of sodium and thus the saltiness is most similar. In contrast rubidium and cesium ions are far larger so their salty taste differs accordingly. Potassium, as potassium chloride - KCl, is the principal ingredient in salt substitutes.

Other monovalent cations, e.g. ammonium, NH4+, and divalent cations of the alkali earth metal group of the periodic table, e.g. calcium, Ca2+, ions generally elicit a bitter rather than a salty taste even though they too can pass directly through ion channels in the tongue, generating an action potential.


Sourness is the taste that detects acidity. The mechanism for detecting sour taste is similar to that which detects salt taste. Hydrogen ion channels detect the concentration of hydronium ions (H3O+ ions) that are formed from acids and water.

Hydrogen ions are capable of permeating the amiloride-sensitive channels, but this is not the only mechanism involved in detecting the quality of sourness. Other channels have also been proposed in the literature. Hydrogen ions also inhibit the potassium channel, which normally functions to hyperpolarize the cell. By a combination of direct intake of hydrogen ions (which itself depolarizes the cell) and the inhibition of the hyperpolarizing channel, sourness causes the taste cell to fire in this specific manner. In addition, it has also been suggested that weak acids, such as CO2 which is converted into the bicarbonate ion HCO3 by the enzyme carbonic anhydrase, to mediate weak acid transport.Clarifyme|date=May 2008


Sweetness is produced by the presence of sugars, some proteins and a few other substances. Sweetness is often connected to aldehydes and ketones, which contain a carbonyl group. Sweetness is detected by a variety of G protein coupled receptors coupled to the G protein gustducin found on the taste buds. At least two different variants of the "sweetness receptors" need to be activated for the brain to register sweetness. The compounds which the brain senses as sweet are thus compounds that can bind with varying bond strength to two different sweetness receptors. These receptors are T1R2+3 (heterodimer) and T1R3 (homodimer), which are shown to be accountable for all sweet sensing in humans and animals. [ cite journal | last=Zhao | first=Grace Q. | coauthors = Yifeng Zhang, Mark A. Hoon, Jayaram Chandrashekar, Isolde Erlenbach, Nicholas J.P. Ryba, Charles S. Zuker | title=The Receptors for Mammalian Sweet and Umami taste | journal=Cell |month=October | year=2003 | volume=115 | issue=3|pages= 255–266|url=http://download.cell.com/pdfs/0092-8674/PIIS0092867403008444.pdf|format=PDF|accessdate=2007-12-30 | doi=10.1016/S0092-8674(03)00844-4] The average human detection threshold for sucrose is 10 millimoles per litre. For lactose it is 30 millimoles per litre, and 5-Nitro-2-propoxyaniline 0.002 millimoles per litre.


nihongo|Umami|旨味, うまみ is the name for the taste sensation produced by compounds such as glutamate, and are commonly found in fermented and aged foods. In English, it is also described as "meatiness", "relish", or "savoriness". The Japanese word comes from nihongo|"umai"|旨い for yummy, keen, or nice. Umami is now the commonly used term by taste scientists. The same taste is referred to as "xiānwèi" (nihongo2|鮮味 or nihongo2|鲜味) in Chinese cooking. Umami is considered a fundamental taste in Chinese and Japanese cooking, but is not discussed as much in Western cuisine.

Humans have taste receptors specifically for the detection of the amino acids, e.g. glutamic acid. Amino acids are the building blocks of proteins and are found in meats, cheese, fish, and other protein-heavy foods. Examples of food containing glutamate (and thus strong in umami) are beef, lamb, parmesan and roquefort cheese as well as soy sauce and fish sauce. The glutamate taste sensation is most intense in combination with sodium ions, as found in table salt. Sauces with umami and salty tastes are very popular for cooking, such as worcestershire sauce for Western cuisines and soy sauce and fish sauce for Asian cuisines.

The additive monosodium glutamate (MSG), which was developed as a food additive in 1907 by Kikunae Ikeda, produces a strong umami. Umami is also provided by the nucleotides 5’-inosine monophosphate (IMP) and 5’-guanosine monophosphate (GMP). These are naturally present in many protein-rich foods. IMP is present in high concentrations in many foods, including dried skipjack tuna flakes used to make "dashi", a Japanese broth. GMP is present in high concentration in dried "shiitake " mushrooms, used in much of the cuisine of Asia. There is a synergistic effect between MSG, IMP, and GMP which together in certain ratios produce a strong umami.

Some umami taste buds respond specifically to glutamate in the same way that "sweet" ones respond to sugar. Glutamate binds to a variant of G protein coupled glutamate receptors. [ cite journal | last=Lindemann | first=Bernd | title=A taste for Umami taste| journal=Nature Neuroscience |month=February | year=2000 | volume=3 | issue=2|pages= 99–100|url=http://www.nature.com/neuro/journal/v3/n2/pdf/nn0200_99.pdf|format=PDF|accessdate=2007-12-30 | doi=10.1038/72153] [ cite journal | last=Chaudhari | first=Nirupa | coauthors = Ana Marie Landin, Stephen D. Roper | title=A metabotropic glutamate receptor variant functions as a taste receptor | journal=Nature Neuroscience |month=February | year=2000 | volume=3 | issue=2|pages= 113–119|url=http://www.nature.com/neuro/journal/v3/n2/pdf/nn0200_113.pdf|format=PDF|accessdate=2007-12-30 | doi=10.1038/72053]


Recent research has revealed a potential taste receptor called the CD36 receptor to be reacting to fat, more specifically, fatty acids. [ [http://www.sciam.com/article.cfm?chanID=sa003&articleID=000AFE88-E770-1367-A6B083414B7F4945 Potential Taste Receptor for Fat Identified: Scientific American ] ] This receptor was found in mice, but probably exists among other mammals as well. In experiments, mice with a genetic defect that blocked this receptor didn't show the same urge to consume fatty acids as normal mice, and failed to prepare gastric juices in their digestive tracts to digest fat. This discovery may lead to a better understanding of the biochemical reasons behind this behaviour, although more research is still necessary to confirm the relationship between CD36 and the perception of fat. "'


In 2008 chemists discovered the presence of a CaSR calcium gland on the tongues of mice. The gland is commonly found in the gastrointestinal tract, kidneys, and brain, which along with the "sweet" T1R3 gland can detect calcium as a taste. Due to the closely related genes of mice and humans, the phenomenon may exist in humans as well. [Citation
first = Michael G.
last = Tordorf
author-link =
contribution = Chemosensation of Calcium
title = American Chemical Society National Meeting, Fall 2008, 236th
year = 2008
pages = AGFD 207
place = Philadelphia, PA
publisher = American Chemical Society
url = http://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_TRANSITIONMAIN&node_id=859&use_sec=false&sec_url_var=region1
doi =
id =
] [ [http://www.sciencedaily.com/releases/2008/08/080820163008.htm That Tastes ... Sweet? Sour? No, It's Definitely Calcium!: Science Daily ] ]

Further sensations

The tongue can also feel other sensations, not generally called tastes "per se" or included in the five human tastes. These are largely detected by the somatosensory system.


Some foods, such as unripe fruits, contain tannins or calcium oxalate that cause an astringent or rough sensation of the mucous membrane of the mouth or the teeth. Examples include tea, rhubarb, grapes and unripe persimmons and bananas.

Less exact terms for the astringent sensation are "dry", "rough", "harsh" (especially for wine), "tart", (normally referring to sourness) "rubbery", "hard", or "styptic", [http://www3.interscience.wiley.com/journal/68000103/abstract] . The Chinese have a term for this: 澀 ("sè"), the Koreans have 떫다 ("tteolda"), the Japanese call it 渋い ("shibui"), while Thai have ฝาด (fard), the Malay use "kelat", Filipinos use "pakla", and in Russian there is "вяжущий (vyazhuschiy)" or "тёрпкий (tjorpky)".

In the Indian tradition, one of the 6 tastes (sweet, sour, salty, bitter, hot/pungent and dry) [http://www.ayurshop.com/diet/rasas.html] is astringency (Kasaaya in Sanskrit). This is more or less in line with the Japanese approach to umami.


Most people know this taste (e.g. Cu2+, FeSO4, or blood in mouth), but it is not only taste but olfactory receptors worked in this case ("Guth" and "Grosch", 1990). Metallic taste is commonly known, however biologists are reluctant to categorize it with the other taste sensations. One of the primary reasons is that it is not one commonly associated with consumption of food. Proponents of the theory contest that the sensation is readily detectable and distinguishable to test subjects and that therefore, "metallic" should be added as one of the basic types of sensations in the chemical receptor senses.

Prickliness or hotness

Substances such as ethanol and capsaicin cause a burning sensation by inducing a trigeminal nerve reaction together with normal taste reception. The sensation of heat is caused by the food activating nerve cells containing TRPV1 receptors, which is also activated by hot temperatures. The piquant sensation, usually referred to as being "hot" or "spicy", is a notable feature of Mexican, Hungarian, Indian, Szechuan, Korean, Indonesian, central Vietnamese, and Thai cuisines.

The two main plants providing this sensation are chili peppers (those fruits of the "Capsicum" plant that contain capsaicin) and black pepper.

If tissue in the oral cavity has been damaged or sensitised, ethanol may be experienced as pain rather than simply heat. Those who have had radiotherapy for oral cancer thus find it painful to drink alcohol.Fact|date=October 2007

This particular sensation is not considered a taste in the technical sense, because it is carried to the brain by a different set of nerves. Although taste nerves are also activated when consuming foods like chili peppers, the sensation commonly interpreted as "hot" results from the stimulation of somatosensory (pain/temperature) fibers on the tongue.


Some substances activate cold trigeminal receptors. One can sense a cool sensation (also known as "fresh" or "minty") from, e.g., spearmint, menthol, ethanol or camphor, which is caused by the food activating the TRP-M8 ion channel on nerve cells that also signal cold. Unlike the actual change in temperature described for sugar substitutes, coolness is only a perceived phenomenon.


Both Chinese and Batak Toba cooking include the idea of 麻 "má", or "mati rasa" the sensation of tingling numbness caused by spices such as Sichuan pepper. The cuisine of Sichuan province in China and of North Sumatra province in Indonesia, often combines this with chili pepper to produce a 麻辣 "málà", "numbing-and-hot", or "mati rasa" flavor. [ [http://www.uni-graz.at/~katzer/engl/Zant_pip.html?noframes Spice Pages: Sichuan Pepper (Zanthoxylum, Szechwan peppercorn, fagara, hua jiao, sansho 山椒, timur, andaliman, tirphal) ] ]

Heartiness (Kokumi)

Some Japanese researchers refer to the "kokumi" in foods laden with alcohol- and thiol-groups in their amino acid extracts which has been described variously as continuity, mouthfulness, mouthfeel, and thickness.


Temperature is an essential element of human taste experience. Food and drink that—within a given culture—is considered to be properly served hot is often considered distasteful if cold, and "vice versa".

Some sugar substitutes have strong heats of solution, as is the case of sorbitol, erythritol, xylitol, mannitol, lactitol, and maltitol. When they are dry and are allowed to dissolve in saliva, heat effects can be recognized. The cooling effect upon eating may be desirable, as in a mint candy made with crystalline sorbitol, or undesirable if it's not typical for that product, like in a cookie. Crystalline phases tend to have a positive heat of solution and thus a cooling effect. The heats of solution of the amorphous phases of the same substances are negative and cause a warm impression in the mouth. [cite journal
first = HK
last = Cammenga
authorlink =
coauthors = LO Figura, B Zielasko
year = 1996
month =
title = Thermal behaviour of some sugar alcohols
journal = Journal of thermal analysis
volume = 47
issue = 2
pages = 427–434
id =
url =
doi = 10.1007/BF01983984


A supertaster is a person whose sense of taste is significantly more sharp than average. Women are more likely to be supertasters, as are Asians, Africans, and South Americans. Among individuals of European descent, it is estimated that about 25% of the population are supertasters. The cause of this heightened response is currently unknown, although it is thought to be, at least in part, due to an increased number of fungiform papillae. [Bartoshuk, L. M., V. B. Duffy, "et al." (1994). "PTC/PROP tasting: anatomy, psychophysics, and sex effects." 1994. "Physiol Behav" 56(6): 1165-71.] The evolutionary advantage to supertasting is unclear. In some environments, heightened taste response, particularly to bitterness, would represent an important advantage in avoiding potentially toxic plant alkaloids. However, in other environments, increased response to bitter may have limited the range of palatable foods. In a modern, energy-rich environment, supertasting may be cardioprotective, due to decreased liking and intake of fat, but may increase cancer risk via decreased vegetable intake. It may be a cause of picky eating, but picky eaters are not necessarily supertasters, and vice versa.


Aftertaste is the persistence of a sensation of flavor after the stimulating substance has passed out of contact with the sensory end organs for taste.dubious Some aftertastes may be pleasant, others unpleasant.

Alcoholic beverages such as wine, beer and whiskey are noted for having particularly strong aftertastes. Foods with notable aftertastes include spicy foods, such as Mexican food (e.g. chili pepper), or Indian food (such as curry).

Medicines and tablets may also have a lingering aftertaste.

Acquired taste

An acquired taste is an appreciation for a food or beverage that is unlikely to be enjoyed, in part or in full, by a person who has not had substantial exposure to it, usually because of some unfamiliar aspect of the food or beverage, including a strong or strange odor, taste, or appearance. The process of “acquiring” a taste involves consuming a food or beverage in the hope of learning to enjoy it. In most cases, this introductory period is considered worthwhile, as many of the world's delicacies are considered to be acquired tastes. A connoisseur is one who is held to have an expert judgment of taste.

Factors affecting taste perception

Many factors affect taste perception, including:
*Color/vision impairments
*Hormonal influences
*Genetic variations; see Phenylthiocarbamide
*Oral temperature
*Drugs and chemicals
*Natural Substances (http://en.wikipedia.org/wiki/Miracle_fruit)
*CNS Tumors (esp. Temporal lobe lesions) and other neurological causescite journal |author=Heckmann JG, Lang CJ |title=Neurological causes of taste disorders |journal=Adv. Otorhinolaryngol. |volume=63 |issue= |pages=255–64 |year=2006 |pmid=16733343 |doi=10.1159/000093764]
*Plugged noses
*Zinc deficiencyIt is also important to consider that flavor is the overall, total sensation induced during mastication (e.g. taste, touch, pain and smell). Smell (olfactory stimulation) plays a major role in flavor perception.

Disorders of taste

*ageusia (complete loss of taste)
*dysgeusia (persistent abnormal taste)

Taste modulators

Compounds so called taste modulators that enhance the sweet and salty flavors of foods could combat obesity and heart disease. Researchers have discovered tiny compounds that make foods taste sweeter, saltier and more savory than they really are, which could reduce the sugar, salt and monosodium glutamate typically added. Several of these taste enhancers are being tested in commercial foods. Whether people will consume fewer calories if their foods become tastier remains to be seen; people might eat lots of sweet foods for reasons that have nothing to do with taste. [ [http://www.sciam.com/article.cfm?id=magnifying-taste "Magnifying Taste: New Chemicals Trick the Brain into Eating Less"] "Scientific American", August 2008 (in Biology).]

ee also

*Optimal foraging theory
*Vomeronasal organ


External links

* [http://hum-molgen.org/NewsGen/11-2003/msg11.html Researchers Define Molecular Basis of Human "Sweet Tooth" and Umami Taste]
* [http://scribd.com/doc/35336/Curious-about-tastes-and-smells/ Answers to several questions of curious kids about taste]

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • taste — n 1 Taste, flavor, savor, tang, relish, smack can all mean the property of a substance which makes it perceptible to the gustatory sense. Taste not only is the most inclusive of these terms but it gives no suggestion of a specific character or… …   New Dictionary of Synonyms

  • Taste — Taste, n. 1. The act of tasting; gustation. [1913 Webster] 2. A particular sensation excited by the application of a substance to the tongue; the quality or savor of any substance as perceived by means of the tongue; flavor; as, the taste of an… …   The Collaborative International Dictionary of English

  • Taste — Pays d’origine Cork,  Irlande Genre musical Rock Années d activité 1966 1970 2 …   Wikipédia en Français

  • taste — [tāst] vt. tasted, tasting [ME tasten < OFr taster, to handle, touch, taste < VL * tastare, prob. < * taxitare, freq. of L taxare, to feel, touch sharply, judge of, freq. of tangere: see TACT] 1. Obs. to test by touching 2. to test the… …   English World dictionary

  • Taste — belongs to our chemical sensing system, or the chemosenses. The complicated process of tasting begins when molecules released by the substances stimulate special cells in the mouth or throat. These special sensory cells transmit messages through… …   Medical dictionary

  • Taste — Datos generales Origen Irlanda Información artística Género(s) Rhythm Blues Blues Rock …   Wikipedia Español

  • taste — [n1] flavor of some quality aftertaste, aroma, bang*, bitter, drive, ginger, jolt, kick*, oomph*, palatableness, piquancy, punch*, relish, salt, sapidity, sapor, savor, savoriness, smack, sour, sting*, suggestion, sweet, tang*, wallop, zest,… …   New thesaurus

  • Taste — (t[=a]st), v. t. [imp. & p. p. {Tasted}; p. pr. & vb. n. {Tasting}.] [OE. tasten to feel, to taste, OF. taster, F. tater to feel, to try by the touch, to try, to taste, (assumed) LL. taxitare, fr. L. taxare to touch sharply, to estimate. See… …   The Collaborative International Dictionary of English

  • Taste — Taste, v. i. 1. To try food with the mouth; to eat or drink a little only; to try the flavor of anything; as, to taste of each kind of wine. [1913 Webster] 2. To have a smack; to excite a particular sensation, by which the specific quality or… …   The Collaborative International Dictionary of English

  • taste — ► NOUN 1) the sensation of flavour perceived in the mouth on contact with a substance. 2) the faculty of perceiving this. 3) a small portion of food or drink taken as a sample. 4) a brief experience of something. 5) a person s liking for… …   English terms dictionary

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”